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What’s This Course About?

You have probably already taken lots of macro: Principles, Intermediate,
Advanced, Masters Part 1....

What’s left to learn?

Well, mostly you’ve learned small models that teach useful principles.
Monetary policy is effective in the short-run but not in the long run;
technological progress is the source of long-run growth. That kind of thing.

These are valuable in helping you understand how the world works but how
useful would that be if you had to work for a finance ministry or a central
bank?

Imagine if Janet Yellen or Mario Draghi asked you what would happen if they
took action X versus action Y?

Ideally, they would want to know how consumption, investment, output, and
inflation would respond next quarter and the quarter after that, and so on.

General principles wouldn’t help you much.
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Macroeconomics as an Applied Subject

Beyond establishing general principles, macroeconomists aim to produce
models that are as useful as possible for policy analysis and forecasting.

The main purpose of this module is to introduce you to the types of models
being used in modern applied macro.

The course will have three parts:

1 Time Series as a Framework for Modern Macro: We will discuss
how time series provides a way to think about empirical macro, focusing
particularly on Vector Autoregressions which are popular econometric
models for forecasting and “what if?” scenario analysis.

2 Dynamic Stochastic General Equilibrium (DSGE) Models:
Theoretically-founded models. We will cover the methods used to derive
these models and simulate them on a computer. We will start with Real
Business Cycle models and then move on to New-Keynesian models.

3 Financial Markets, Banking and Systemic Risk: We will cover risk
spreads, credit rationing, financial intermediation, bank runs, banking
regulation, systemic risk and bank balance sheet adjustments.
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Trends and Cycles

Macroeconomists tend to break series into a “non-stationary” long-run trend
and a “stationary” cyclical component.

“Business cycle analysis” relates to this modelling and explaining the cyclical
components of the major macroeconomic variables.

Fine in theory, but how is this done in practice?

Simplest method: Log-linear trend

I Estimated from regression

log(Yt) = yt = α + gt + εt

I Trend component α + gt.
I Zero-mean stationary cyclical component εt .
I Log-difference ∆yt (equivalent to growth rate) has two components:

Constant trend growth g and the change in cyclical component ∆εt .
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Trends and Cycles in US GDP: Cycles Are Pretty Small
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Simplest Example: Log-Linear Trend
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Cycles From a Log-Linear Trend Model
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Potential Problems: A Stochastic Trend Model

Drawing straight lines to detrend series can provide misleading results. For
example, suppose the correct model is

yt = g + yt−1 + εt

Growth has a constant component g and a random bit εt .

Cycles are just the accumulation of all the random shocks that have affected
∆yt over time.

There is no tendency to revert to the trend: Expected growth rate is always g
no matter what has happened in the past.

In this case ∆yt is stationary: First-differencing gets rid of the non-stationary
stochastic trend component of the series.

In this example, if we fitted a log-linear trend line through the series, there
might appear to be a mean-reverting cyclical component but there is not.

So detrending times series is not generally as simple as drawing a straight line.
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Variations in Trend Growth: The Hodrick-Prescott Filter

A more realistic model should be one in which we accept that growth rate of
the trend probably varies a bit over time leaving a cycle that moves up and
down over time.

Hodrick and Prescott (1981) suggested choosing the time-varying trend Y ∗
t so

as to minimize
N∑
t=1

[
(Yt − Y ∗

t )2 + λ
(
∆Y ∗

t − ∆Y ∗
t−1

)]
This method tries to minimize the sum of squared deviations between output
and its trend (Yt − Y ∗

t )2 but also contains a term that emphasises minimizing
the change in the trend growth rate (λ

(
∆Y ∗

t − ∆Y ∗
t−1

)
).

How do we choose λ and thus weight the goodness-of-fit of the trend versus
smoothness of the trend?

λ = 1600 is the standard value used in business cycle detrending. We will
discuss this choice in more detail in a few weeks.

Many DSGE modellers apply a HP filter to their data and then analyse only
the cyclical components.
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HP-Filtered Cycles Correspond Well to NBER Recessions
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Investment Cycles Are Bigger than Consumption Cycles
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The AR(1) Model and Impulse Responses

Cyclical components are positively autocorrelated (i.e. positively correlated
with their own lagged values). and also exhibit random-looking fluctuations.

One simple model that captures these features is the AR(1) model
(Auto-Regressive of order 1):

yt = ρyt−1 + εt

Suppose an AR(1) series starts out at zero. Then there is a unit shock, εt = 1
and then all shocks are zero afterwards.

Period t, we have yt = 1, period t + 1, we have yt+1 = ρ, period t + n, we
have yt+n = ρn and so on.

The shock fades away gradually. How fast depends on the size of ρ. The time
path of y after this hypothetical shock is known as the Impulse Response
Function.

Can think of this as the path followed from t onwards when shocks are
(εt + 1, εt+1, εt+2, .....) instead of (εt , εt+1, εt+2, .....), i.e. the incremental
effect in all future periods of a unit shock today.

IRF graphs are commonly used to illustrate dynamic properties of macro data.

Karl Whelan (UCD) Introduction Spring 2016 12 / 24



Volatility: Shocks and Propagation Mechanisms

Consider the AR(1) model
yt = ρyt−1 + εt

Suppose the variance of εt is σ2
ε .

The long run variance of yt is the same as the long-run variance of yt−1 and
(remembering that εt is independent of yt−1) this is given by

σ2
y = ρ2σ2

y + σ2
ε

Simplifies to σ2
y =

σ2
ε

1−ρ2

The variance of output depends positively on both shock variance σ2
ε and also

on the persistence parameter ρ.

So the volatility of the series is partly due to size of shocks but also due to the
strength of the propagation mechanism.
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Example: The Great Moderation

An interesting pattern: Output and inflation became substantially less volatile
after the mid-1980s. This was widely dubbed “The Great Moderation”

This pattern occurred in all the world’s major economies.

What was the explanation?

Smaller shocks? (Smaller values of εt)

1 Less random policy shocks?
2 Smaller shocks from goods markets or financial markets?
3 Smaller supply shocks?

Weaker propagation mechanisms? (Smaller values of ρ)

1 Did policy become more stabilizing?
2 Did the economy become more stable, e.g. better inventory

management, increased share of services?
3 Some had thought that financial modernization had stabilized the

economy. Less clear now!

Does the 2008-2009 global recession and subsequent slow recovery spell the
end for the Great Moderation?
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Less Extreme Movements in Output Growth and Inflation
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The Great Moderation: Substantial Reductions in Volatility
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More Complex Dynamics: The AR(2) Model

Not all impulse response functions just erode gradually of time as in the
AR(1) model.

Macroeconomic dynamics can often be far more complicated.

Consider the AR(2) model:

yt = α + ρ1yt−1 + ρ2yt−2 + εt

This type of model can generate various types of impulse response functions
such as oscillating or hump-shaped responses.

AR(3) and higher models can generate even more complex responses.

Lesson: The dynamic properties of your model will depend upon how many
lags you allow.

Practitioners constructing empirical models often run battery of lag selection
tests to decide upon the appropriate lag length.
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Two Examples of AR(2) Impulse Responses
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Consumption Dynamics Seem to be AR(1)

AR(1) AR(2)
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Output AR(2) Model Shows A Small Humped-Shape IRF

AR(1) AR(2)

5 10 15 20
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Karl Whelan (UCD) Introduction Spring 2016 20 / 24



Lag Operators and Lag Polynomials

The lag operator is a useful piece of terminology that is sometimes used in
time series modelling. The idea is to use an “operator” to move the series
back in time, e.g. Lyt = yt−1 and L2yt = yt−2.

Sometimes economists will specify a model that has a bunch of lags using a
polynominal in lag operators e.g. the model

yt = a1yt−1 + a2yt−2 + εt

can be written as
yt = A(L)yt + εt

where
A(L) = a1L + a2L

2

Alternatively, you could write

B(L)yt = εt

where B(L) = 1 − a1L− a2L
2.
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Vector Autoregressions

AR models are a very useful tool for understanding the dynamics of individual
variables.

But they ignore the interrelationships between variables.

Vector Autoregressions (VARs) model the dynamics of n different variables,
allowing each variable to depend on lagged values of all of the variables.

Can examine impulse responses of all n variables to all n shocks.

Simplest example is two variables and one lag:

y1t = a11y1,t−1 + a12y2,t−1 + e1t

y2t = a21y1,t−1 + a22y2,t−1 + e2t

Invented by Chris Sims (1980). Now used as a central tool in applied
macroeconomics.
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What Are These Shocks?

Macroeconomists now spend a lot of time examining the shocks in VAR models
and their effects. But what are the shocks? Lots of possibilities:

1 Policy changes not due to the systematic component of policy captured by the
VAR equation.

2 Changes in preferences, such as attitudes to consumption versus saving or
work versus leisure.

3 Technology shocks: Random increases or decreases in the efficiency with
which firms produce goods and services.

4 Shocks to various frictions: Increases or decreases in the efficiency with which
various markets operate, such as the labour market, goods markets, or
financial markets.
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Time Series as a Framework for Empirical Macro

The time series perspective—cycles being determined by various random
shocks which are propagated throughout the economy over time—is central to
how modern macroeconomists now view economic fluctuations.

VARs are a very common framework for modelling macroeconomic dynamics
and the effects of shocks.

But while VARs can describe how things work, they cannot explain why
things work that way.

To have real confidence in a description of how the economy works, we ideally
want to know how people in the economy behave and why they they behave
that way.

That’s where economic theory comes in.

DSGE models aim to have the dynamic structure of VARs (shocks and
propagation mechanisms, IRFs) but are derived from economic theory in
which all agents are rational and optimizing.

Karl Whelan (UCD) Introduction Spring 2016 24 / 24


