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Early Approaches to Parameterising DSGE Models

Because DSGE models are relatively complex, early researchers did not
attempt to use econometrics to estimate their parameters.

Instead the early models were “calibrated” by picking parameter values that
matched certain steady-state values (labour share of income, capital-output
ratio and so on) with historical average values or else by using estimates of
parameters from microeconomic studies (coefficient of relative risk aversion,
labour supply elasticities, depreciation rates).

A more formal approach was “indirect inference”– choosing parameters to
match certain moments of the data. For example, Rotemberg and Woodford
(1997) chose parameters that delivered impulse responses to monetary policy
shocks that came closest to matching the data.

This approach has been developed to be considerably more sophisticated than
the Rotemberg-Woodford paper (see the Hall et al paper on the website) but
it still falls well short of using all the information in data.

For example, monetary policy shocks typically only account for a small
percentage of the variation in the sample, so why focus only on this?
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Modern Approaches

Most state-of-the-art papers estimating DGSE models now use Bayesian
econometric techniques that are similar to (but not the same as) the methods
used for estimating VARs that we discussed earlier.

To understand these techniques, we will need to cover a number of new issues.

1 Breaking our model into observable and unobservable variables.
2 The role played by the number of shocks in DSGE models.
3 Kalman filter estimation of state-space models.
4 Bayesian methods for DSGE.
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Starting Point: A Solved Model

The modern approach to estimation starts with the solved version of the
log-linearised model. Let’s recall what is meant by that.

Suppose we have a model described by

KZt = AZt−1 + BEtZt+1 + HXt

where Zt is a set of n endogenous variables and Xt is a set of k exogenous
variables that evolve according to

Xt = DXt−1 + εt

Then we showed before that the model has a solution of the form

Zt = CZt−1 + PXt

where C depends on the coefficients in A and B and P depends on the
coefficients in A, B, H and D.

This can be simulated to establish properties of the model. But how do we go
from observable data back to obtain the “‘best” (however defined) estimates
of the coefficients in A, B, H and D? How this works depends on the kind of
model and the kind of data that we have.
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All Variables Observable

Suppose that all variables in Xt and Zt are observable.

Then the model makes a clear prediction that, given any set of structural
parameters, A, B, H and D, the data will be given by Zt = CZt−1 + PXt .

The “cross-equation restrictions” in DSGE models tend to be very limiting. In
other words, given any values for the A, B, H and D matrices, there are very
particular patterns that must be obeyed by the C and P matrices.

Most likely, there is no set of A, B, H and D matrices that will allow
Zt = CZt−1 + PXt to perfectly fit the data.

In this case, maximum likelihood methods do not work. These methods ask
“how likely” it is that a model might be able to explain the data. But here we
know for sure that the model does not fit the data.

One way to address this issue is to add error terms, ut and then apply
maximum likelihood to estimate A, B, H and D as those matrices that give
the best fitting model of the form Zt = CZt−1 + PXt + ut .

Though the ut don’t have a microeconomic foundation, the size of the error
terms for the best-fitting model gives us a sense of how well this model fits
reality.
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Maximum Likelihood Estimation with Observable Variables

We can use maximum likelihood to estimate the A, B, H and D coefficients
that deliver the best-fitting joint model.

Zt = CZt−1 + PXt + ut

Xt = DXt−1 + εt

where it is assumed that ut ∼ N (0,Σu) and εt ∼ N (0,Σε).

Suppose we observe data Z1,Z2, ...,ZT for our endogenous variables and
X1,X2, ...,XT for our exogenous variables.

The log-likelihood function for the X data is

log LX = −T

2
log 2π − T log

∣∣∣Σ−1
ε
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2

T∑
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And the log-likelihood function for the Z data is

log LZ = −T
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Maximum Likelihood Estimation with Observable Variables

The likelihood for the full model multiplies the likelihood of the X data and
the likelihood of the Z data, so the combined log-likelihood is the sum of the
two log-likelihoods.

So the maximum likelihood estimates of A, B, H, D, Σε and Σu are those
that maximise the log-likelihood

−T log 2π − T
(
log
∣∣Σ−1ε

∣∣+ log
∣∣Σ−1u

∣∣)
−1

2

T∑
k=1

(Xi − DXi−1)′ Σ−1ε (Xi − DXi−1)

−1

2

T∑
k=1

(Zi − CZi − PXi )
′ Σ−1u (Zi − CZi − PXi )

subject to the restrictions that map A and B into C and map A, B, H and D
into P.
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A Mix of Observables and Unobservables

We have been discussing the case in which we can see all of the variables –
both endogenous and exogenous – in our DSGE model.

In fact, most DSGE models are not like this. Instead, these models tend to
mix observable and unobservable variables.

Consider again the log-linearised RBC model that we solved earlier. The
equations of this model are listed on the next page.

I This model features 7 equations in six endogenous variables,
yt , ct , it , kt , nt , rt and one exogenous variable, at .

I We can observe yt , ct , it and nt (or at least the HP-filtered version of
them that we are likely to use to estimate the model). But we don’t
observe at and since we don’t really know depreciation rates, this means
we don’t observe kt or nt .

I So this model mixes four observable variables with three unobservable
variables.

Estimation of these kinds of models requires special techniques to handle
unobservable variables.
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The Linearised RBC Model

yt =

(
1 − αδ

β−1 + δ − 1

)
ct +

(
αδ

β−1 + δ − 1

)
it

yt = at + αkt−1 + (1 − α) nt

kt = δit + (1 − δ) kt−1

nt = yt − ηct

ct = Etct+1 −
1

η
Etrt+1

rt = (1 − β (1 − δ)) (yt − kt−1)

at = ρat−1 + εt

Karl Whelan (UCD) Estimating DSGE Models Spring 2016 9 / 20



The Stochastic Singularity Problem

Models like the one on the previous page provide a micro-foundation for why
we cannot find a perfect fitting model with the observed data: There is an
unobservable technology series and all of the observed series depend on this.

However, it is still not possible to estimate this joint model by maximum
likelihood. This is because the same unobserved series shows up all the
reduced-form solution equations.

So while the model features stochastic shocks, it has a feature that is known
as a stochastic singularity : The shocks in all the equations are just multiples
of each other.

The model thus predicts that certain ratios of the observed variables (e.g.
current and lagged consumption, current and lagged investment) will be
constant. In practice, these predictions will not hold in the data so there is no
chance that this model can fit the data.

In general, for a model to have well-defined econometric estimates, it is
necessary that for every observable variable there be at least one unobservable
shock. This can either take the form of a “measurement error” or else involve
a shock in each equation with a clear structural interpretation.
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DSGEs are State-Space Models

Log-linearised DSGE models with a mix of observable and unobservable
variables are an example of state-space models. Recall that these models
can be described using two equations.

The first, known as the state or transition equation, describes how a set of
unobservable state variables, St , evolve over time as follows:

St = FSt−1 + ut

The term ut can include either normally-distributed errors or perhaps zeros if
the equation being described is an identity. We will write this as
ut ∼ N (0,Σu) though Σu may not have a full matrix rank.

The second equation in a state-space model, which is known as the
measurement equation, relates a set of observable variables, Zt , to the
unobservable state variables

Zt = HSt + vt

Again, the term wt can include either normally-distributed errors or perhaps
zeros if the equation being described is an identity. We will write this as
vt ∼ N (0,Σv ) though Σv may not have a full matrix rank.
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Example: An RBC Model

The solution to the basic RBC model without labour input can be summarised
as

kt = akkkt−1 + akzzt

ct = ackkt−1 + aczzt

zt = ρzt−1 + εt

Now let’s assume that consumption and capital are only observed with error
so that the two observable variables are

k∗t = akkkt−1 + akzzt + ukt
c∗t = ackkt−1 + aczzt + uct
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Example: An RBC Model

This can be written in state-space form as follows.

The transition equation is(
kt−1
zt

)
=

(
akk akz
0 ρ

)(
kt−2
zt−1

)
+

(
0
εt

)
And the measurement equation is(

k∗t−1
c∗t

)
=

(
1 0
ack acz

)(
kt−1
zt

)
+

(
ukt−1
uct

)
Note that a little bit of jiggery-pokery had to be done to get the model in
state-space form and the timing conventions associated with this
representations are not quite the same as in the original model, i.e. we have

St =

(
kt−1
zt

)
and Xt =

(
k∗t−1
c∗t

)
.

Still, all standard DSGE models can be re-arranged to be put in this format.
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MLE for DSGE Models via Kalman Filter

So Kalman filter provides a way to do maximum likelihood estimation of
DSGE models that mix observable and unobservable variables.

You may have found the lecture on the Kalman filter complicated but the
good news is that software packages such as Dynare can do this for you with
a minimum of effort from you once you have specified your model.

In other words, computer packages can now

1 Sort your model into state-space methods.
2 Search across a wide range of possible parameter values.
3 For each of these, apply the Kalman filter/smoother.
4 Then, for each possible set of parameters, it can sum up each of the

period-by-period likelihoods.
5 Then it can decide what the best parameters are and use standard

MLE-related methods to calculate asymptotically valid standard errors.

That’s cool but if you think this is a complicated process where things might
go wrong, then you’d be right.
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A Drawback of MLE

See the paper on the website by Jesus Fernandez-Villaverde. He discusses
some of the problems associated with MLE for DSGE models and explains
why a Bayesian approach of calculating the full posterior distribution may be
preferable.

“maximizing a complicated, highly dimensional function like the likelihood of
a DSGE model is actually much harder than it is to integrate it, which is what
we do in a Bayesian exercise. First, the likelihood of DSGE models is, as I
have just mentioned, a highly dimensional object, with a dozen or so
parameters in the simplest cases to close to a hundred in some of the richest
models in the literature. Any search in a high dimensional function is fraught
with peril. More pointedly, likelihoods of DSGE models are full of local
maxima and minima and of nearly flat surfaces. This is due both to the
sparsity of the data (quarterly data do not give us the luxury of many
observations that micro panels provide) and to the flexibility of DSGE models
in generating similar behavior with relatively different combination of
parameter values .... Moreover, the standard errors of the estimates are
notoriously difficult to compute and their asymptotic distribution a poor
approximation to the small sample one.”
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Bayesian DSGE

For these reasons, Bayesian approaches to estimating DGSE models have
become the standard approach in recent years.

A prior distribution for the parameters is specified and then this is combined
with the full likelihood function to produce an estimate of the posterior
distribution. This posterior distribution can be integrated using numerical
methods to produce means and confidence intervals of various sorts.

Importantly, because you are using an estimate of the full likelihood function,
you are less likely to fall victim to the major errors that can occur from using
an incorrect MLE, which uses only one point of the function.

Dynare allows you to specify priors and to estimate a DSGE model directly.

Researchers generally specify prior means for parameters using values
considered “reasonable” from other studies with the form of the distributions
usually being of a form that fits with a “common sense” view of the potential
range of outcomes.

The estimation results are generally reported by comparing the posterior
means with the prior means as well as reporting the “confidence intervals”
from the posterior distributions.
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Choosing Priors: Normal Distribution
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Choosing Priors: Gamma Distribution (Parameter
Restricted to be Positive)
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Choosing Priors: Beta Distribution (Parameter Restricted
to between Zero and One)
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Some Readings
Three useful papers for more details and discussion all available on the website.

1 Francisco J. Ruge-Murcia, “Methods to Estimate Dynamic Stochastic General
Equilibrium Models.” A nice discussion of non-Bayesian estimation methods
for DSGE model with a particularly clear focus on the stochastic singularity
issue.

2 Peter Ireland, “A Method for Taking Models to the Data.” A clear
presentation of how to use the Kalman Filter to do MLE for DSGE models
with a fully-worked example.

3 Jesus Fernandez-Villaverde, “The Econometrics of DGSE Models.” A detailed
(and fairly advanced) discussion of Bayesian methods for estimating DSGE
models and a nice example of how the methods are used.

Karl Whelan (UCD) Estimating DSGE Models Spring 2016 20 / 20


