
MA Advanced Macroeconomics
2. Vector Autoregressions

Karl Whelan

School of Economics, UCD

Spring 2016

Karl Whelan (UCD) Vector Autoregressions Spring 2016 1 / 38



Part I

Introducing VAR Methods
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Background on VARs

These model were introduced to the economics profession by Christopher Sims
(1980) in a path-breaking article titled “Macroeconomics and Reality.”

Sims was indeed telling the macro profession to “get real.”

He criticized the widespread use of highly specified macro-models that made
very strong identifying restrictions (in the sense that each equation in the
model usually excluded most of the model’s other variables from the
right-hand-side) as well as very strong assumptions about the dynamic nature
of these relationships.

VARs were an alternative that allowed one to model macroeconomic data
accurately, without having to impose lots of incredible restrictions. In the
phrase used in an earlier paper by Sargent and Sims (who shared the Nobel
prize award) it was “macro modelling without pretending to have too much a
priori theory.”

We will see that VARs are not theory free. But they do make the role of
theoretical identifying assumptions far clearer than was the case for the types
of models Sims was criticizing.
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Matrix Formulation of VARs

The simplest possible VAR features two variables and one lag:

y1t = a11y1,t−1 + a12y2,t−1 + e1t

y2t = a21y1,t−1 + a22y2,t−1 + e2t

The most compact way to express a VAR system like this is to use matrices.
Defining the matrices

Yt =

(
y1t
y2t

)
A =

(
a11 a12
a21 a22

)
et =

(
e1t
e2t

)
This system can be written as

Yt = AYt−1 + et
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Vector Moving Average (VMA) Representation

VARs express variables as function of what happened yesterday and today’s
shocks.

But what happened yesterday depended on yesterday’s shocks and on what
happened the day before.

This VMA representation is obtained as follows

Yt = et + AYt−1

= et + A (et−1 + AYt−2)

= et + Aet−1 + A2 (et−2 + AYt−3)

= et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

This makes clear how today’s values for the series are the cumulation of the
effects of all the shocks from the past.

It is also useful for deriving predictions about the properties of VARs.
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Impulse Response Functions

Suppose there is an initial shock defined as

e0 =

(
1
0

)
and then all error terms are zero afterwards, i.e. et = 0 for t > 0.

Recall VMA representation

Yt = et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

This tells us that the response after n periods is An

(
1
0

)
So IRFs for VARs are directly analagous to the IRFs for AR(1) models that we
looked at before.
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Using a VAR to Forecast

VARs are often used for forecasting.

Supppose we observe our vector of variables Yt . What’s our forecast for Yt+1?

The model for next period is

Yt+1 = AYt + et+1

Because Etet+1 = 0, an unbiased forecast at time t is AYt . In other words,
EtYt+1 = AYt .

The same reasoning tells us that A2Yt is an unbiased forecast of Yt+2 and
A3Yt is an unbiased forecast of Yt+3 and so on.

So once a VAR is estimated and organised to be in this form, it is very easy to
construct forecasts.
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Generality of the First-Order Matrix Formulation: I

The model we’ve been looking at may seem like a small subset of all possible
VARs because it doesn’t have a constant term and only has lagged values
from one period ago.

However, one can add a third variable here which takes the constant value 1
each period. The equation for the constant term will just state that it equals
its own lagged values. So this formulation actually incorporates models with
constant terms.

We would also expect most equations in a VAR to have more than one lag.
Surely this makes things much more complicated?

Not really. It turns out, the first-order matrix formulation can represent VARs
with longer lags.

Consider the two-lag system

y1t = a11y1,t−1 + a12y1,t−2 + a13y2,t−1 + a14y2,t−2 + e1t

y2t = a21y1,t−1 + a22y1,t−2 + a23y2,t−1 + a24y2,t−2 + e2t
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Generality of the First-Order Matrix Formulation: II

Now define the vector

Zt =


y1t

y1,t−1
y2t

y2,t−1


This system can be represented in matrix form as

Zt = AZt−1 + et

where

A =


a11 a12 a13 a14
1 0 0 0
a21 a22 a23 a24
0 0 1 0

 et =


e1t
0
e2t
0


This is sometimes called the “companion form” matrix formulation.
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Interpreting Shocks and Impulse Responses

The system we’ve been looking at is usually called a reduced-form VAR model.

It is a purely econometric model, without any theoretical element.

How should we interpret it? One interpretation is that e1t is a shock that
affects only y1t on impact and e2t is a shock that affects only y2t on impact.

For instance, one can use the IRFs generated from an inflation-output VAR to
calculate the dynamic effects of “a shock to inflation” and “a shock to
output”.

But other interpretations are available.

For instance, one might imagine that the true shocks generating inflation and
output are an “aggregate supply” shock and an “aggregate demand” shock
and that both of these shocks have a direct effect on both inflation and
output.

How would we identify these “structural” shocks and their impulse responses?
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The Multiplicity of Shocks and IRFs

Suppose reduced-form and structural shocks are related by

e1t = c11ε1t + c12ε2t

e2t = c21ε1t + c22ε2t

Can write this in matrix form as

et = Cεt

These two VMA representations describe the data equally well:

Yt = et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

= Cεt + ACεt−1 + A2Cεt−2 + A3Cεt−3 + ......+ AtCε0

Can interpret the model as one with shocks et and IRFs given by An.

Or as a model with structural shocks εt and IRFs are given by AnC .

And we could do this for any C : We just don’t know the structural shocks.
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Contemporaneous Interactions: I

Another way to see how reduced-form shocks can be different from structural
shocks is if there are contemporaneous interactions between variables, which
is likely.

Consider the following model:

y1t = a12y2t + b11y1,t−1 + b12y2,t−1 + ε1t

y2t = a21y1t + b21y1,t−1 + b22y2,t−1 + ε2t

Can be written in matrix form as

AYt = BYt−1 + εt

where

A =

(
1 −a12
−a21 1

)
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Contemporaneous Interactions: II

Now if we estimate the “reduced-form” VAR model

Yt = DYt−1 + et

Then the reduced-form shocks and coefficients are

D = A−1B

et = A−1εt

Again, the following two decompositions both describe the data equally well

Yt = et + Det−1 + D2et−2 + D3et−3 + ......

= A−1εt + DA−1εt−1 + D2A−1εt−2 + ......+ DtA−1ε0

For the structural model, the impulse responses to the structural shocks from
n periods are given by DnA−1.

Again, this is true for any arbitrary A matrix.
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Why Care?

There is no problem with forecasting with reduced-form VARs: Once you
know the reduced-form shocks and how they have affected today’s value of
the variables, you can use the reduced-form coefficients to forecast.

The problem comes when you start asking “what if” questions? For example,
“what happens if there is a shock to the first variable in the VAR?”

In practice, the error series in reduced-form VARs are usually correlated with
each other. So are you asking “What happens when there is a shock to the
first variable only?” or are you asking “What usually happens when there is a
shock to the first variable given that this is usually associated with a
corresponding shock to the second variable?”

Most likely, the really interesting questions about the structure of the
economy relate to the impact of different types of shocks that are
uncorrelated with each other.

A structural identification that explains how the reduced-form shocks are
actually combinations of uncorrelated structural shocks is far more likely to
give clear and interesting answers.
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Structural VARs: A General Formulation

In its general formulation, the structural VAR is

AYt = BYt−1 + Cεt

The model is fully described by the following parameters:

1 n2 parameters in A
2 n2 parameters in B
3 n2 parameters in C
4

n(n+1)
2 parameters in Σ, which describes the pattern of variances in

covariances underlying the shock terms.

Adding all these together, we see that the most general form of the structural

VAR is a model with 3n2 + n(n+1)
2 parameters.
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Identification of Structural VARs: The General Problem

Estimating the reduced-form VAR

Yt = DYt−1 + et

gives us information on n2 + n(n+1)
2 parameters: The coefficients in D and the

estimated covariance matrix of the reduced-form errors.

To obtain information about structural shocks, we thus need to impose 2n2 a
priori theoretical restrictions on our structural VAR.

This will leave us with n2 + n(n+1)
2 known reduced-form parameters and

n2 + n(n+1)
2 structural parameters that we want to know.

This can be expressed as n2 + n(n+1)
2 equations in n2 + n(n+1)

2 unknowns, so
we can get a unique solution.

Example: Asserting that the reduced-form VAR is the structural model is the
same as imposing the 2n2 a priori restrictions that A = C = I .
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Recursive SVARs

SVARs generally identify their shocks as coming from distinct independent
sources and thus assume that they are uncorrelated.

The error series in reduced-form VARs are usually correlated with each other.
One way to view these correlations is that the reduced-form errors are
combinations of a set of statistically independent structural errors.

The most popular SVAR method is the recursive identification method.

This method (used in the original Sims paper) uses simple regression
techniques to construct a set of uncorrelated structural shocks directly from
the reduced-form shocks.

This method sets A = I and constructs a C matrix so that the structural
shocks will be uncorrelated.
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The Cholesky Decomposition

Start with a reduced-form VAR with three variables and errors e1t , e2t , e3t .

Take one of the variables and assert that this is the first structural shock,
ε1t = e1t .

Then run the following two OLS regressions involving the reduced-form shocks

e2t = c21e1t + ε2t

e3t = c31e1t + c32e2t + ε3t

This gives us a matrix equation Get = εt .

Inverting G gives us C so that et = Cεt . Identification done.

Remember that error terms in OLS equations are uncorrelated with the
right-hand-side variables in the regressions.

Note now that, by construction, the εt shocks constructed in this way are
uncorrelated with each other.
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Interpreting the Cholesky Decomposition

The method posits a sort of “causal chain” of shocks.

The first shock affects all of the variables at time t. The second only affects
two of them at time t, and the last shock only affects the last variable at time
t.

The reasoning usually relies on arguments such as “certain variables are sticky
and don’t respond immediately to some shocks.” We will discuss examples
next week.

A serious drawback: The causal ordering is not unique. Any one of the VARs
variables can be listed first, and any one can be listed last.

This means there are n! = (1)(2)(3)....(n) possible recursive orderings.

Which one you like will depend on your own prior thinking about causation.
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Another Way to Do Recursive VARs

The idea of certain shocks having effects on only some variables at time t can
be re-stated as some variables only having effects on some variables at time t.

In our 3 equation example this method sets C = I and directly estimates the
A and B matrices using OLS:

y1t = b11y1,t−1 + b12y2,t−1 + b13y3,t−1 + ε1t

y2t = b21y1,t−1 + b22y2,t−1 + b23y3,t−1 − a21y1t + ε2t

y3t = b31y1,t−1 + b32y2,t−1 + b33y3,t−1 − a31y1t − a32y2t + ε3t

See how the first shock affects all the variables while the last shock only
affects the last variable.

This method delivers shocks and impulse responses that are identical to the
Cholesky decomposition.

Shows that different combinations of A,B and C can deliver the same
structural model.
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Part II

Estimating VARs
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How to Estimate a VAR’s Parameters?

VARs consist of a set of linear equations, so OLS is an obvious technique for
estimating the coefficients.

However, it turns out that OLS estimates of a VAR’s parameters are biased.

Here we discuss a set of econometric issues relating to VARs. Specifically, we
discuss

1 The nature of the bias in estimating VARs with OLS.
2 Methods for adjusting OLS estimates for their bias.
3 An asymptotic justification for OLS, stemming from the fact that they

are Maximum Likelihood Estimators for VAR models when errors are
normal.

4 A method for calculating standard errors for impulse response functions.
5 Problems due to have large amounts of parameters to estimate.
6 Bayesian estimation of VAR models as a solution to this problem.
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OLS Estimates of VAR Models Are Biased

Consider the AR(1) model
yt = ρyt−1 + εt

The OLS estimator for a sample of size T is

ρ̂ =

∑T
t=2 yt−1yt∑T
t=2 y

2
t−1

= ρ+

∑T
t=2 yt−1εt∑T
t=2 y

2
t−1

= ρ+
T∑
t=2

(
yt−1∑T
t=2 y

2
t−1

)
εt

εt is independent of yt−1, so E (yt−1εt) = 0. However, εt is not independent

of the sum
∑T

t=2 y
2
t−1. If ρ is positive, then a positive shock to εt raises

current and future values of yt , all of which are in the sum
∑T

t=2 y
2
t−1. This

means there is a negative correlation between εt and yt−1∑T
t=2 y

2
t−1

, so E ρ̂ < ρ.

This argument generalises to VAR models: OLS estimates are biased.
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The Bias of VAR Estimates

Recall that for the AR(1) model, the OLS estimate can be written as

ρ̂ = ρ+
T∑
t=2

(
yt−1∑T
t=2 y

2
t−1

)
εt

Bias stems from correlation of εt with
∑T

t=2 y
2
t−1.

The size of the bias depends on two factors:

1 The size of ρ: The bigger this is, the stronger the correlation of the
shock with future values and thus the bigger the bias.

2 The sample size T : The larger this is, the smaller the fraction of the
observations sample that will be highly correlated with the shock and
thus the smaller the bias.

More generally, the bias in OLS estimates of VAR coefficients will be larger
the higher are the “own lag” coefficients and the smaller the sample size.
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A Bootstrap Bias Adjustment

If OLS bias is likely to be a problem, one solution is to use “bootstrap
methods”.

These use the estimated error terms to simulate the underlying sampling
distribution of the OLS estimators when the data generating process is given
by a VAR with the estimated parameters. These calculations can be used to
apply an adjustment to the OLS bias.

In practice, this can be done roughly as follows:

1 Estimate the VAR Zt = AZt−1 + εt via OLS and save the errors ε̂t .
2 Randomly sample from these errors to create, for example, 10,000 new

error series ε∗t and simulated data series generated by the recursion
Z∗t = ÂOLSZ∗t−1 + ε∗t . (Need some starting assumption about Z0.)

3 Estimate a VAR model on the simulated data and save the 10,000
different sets of OLS estimate coefficients Â∗.

4 Compute median values of each entry in Â∗ as Ā and compare this to Â
to get an estimate of the bias of the OLS estimates.

5 Formulate new estimates ÂBOOT = ÂOLS −
(
Ā− ÂOLS

)
See the paper by Killian on the webpage.
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Maximum Likelihood Estimation

Let θ be a potential set of parameters for a model and let f be a function
such that, when the model parameters equal θ, the joint probability density
function that generates the data is given by f (y1, y2, ...., yn|θ).

In other words, given a value of θ, f (y1, y2, ...., yn|θ) describes the probability
density of the sample (y1, y2, ...., yn) occurring.

For a particular observed sample (y1, y2, ...., yn), we call f (y1, y2, ...., yn|θ) the
likelihood of this sample occurring if the true value of the parameters
equalled θ.

The maximum likelihood estimator (MLE) is the estimator θMLE that
maximises the value of the likelihood function for the observed data.

MLE estimates may be biased but it can be shown that they are consistent
and asymptotically efficient, i.e. they have the lowest possible asymptotic
variance of all consistent estimators.

In general, MLEs cannot be obtained using analytical methods, so numerical
methods are used to estimate the set of coefficeints that maximise the
likelihood function.
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MLE with Normal Errors

Suppose a set of observations (y1, y2, ...., yn) were generated by a normal
distribution with an unknown mean and standard deviation, µ and σ. Then
the MLEs are the values of µ and σ that maximise the joint likelihood
obtained by multiplying together the likelihood of each of the observations

f (y1, y2, ...., yn|µ, σ) =
n∏

i=1

1√
2πσ2

exp

[
− (yi − µ)2

2σ2

]
Econometricians often work with the log of the likelihood function (this is a
monotonic function so maximising the log of the likelihood produces the same
estimator). In this example, the log-likelihood is

log f (y1, y2, ...., yn|µ, σ) = −n

2
log 2π − n log σ +

n∑
i=1

[
− (yi − µ)2

2σ2

]
More generally, the log-likelihood function of n observations, y1, y2, ...., yn, of
a vectors of size k drawn from a N (µ,Σ) multivariate normal distribution is

log f (y1, y2, ...., yn|µ,Σ) = − (kn)

2
log 2π−n

2
log |Σ|−1

2

n∑
k=1

(yi − µ)′Σ−1 (yi − µ)
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MLE of Time Series with Normal Errors

Suppose εt ∼ N
(
0, σ2

)
. Consider the AR(1) model

yt = ρyt−1 + εt

Figuring out the joint unconditional distribution of a series y1, y2, ...., yn is
tricky but we can say y2 ∼ N

(
ρy1, σ

2
)

and y3 ∼ N
(
ρy2, σ

2
)

and so on.

Let θ = (ρ, σ). Conditional on the first observation, we can write the joint
distribution as

f (y2, ...., yn|θ, y1) = f (yn|θ, yn−1) f (yn−1|θ, yn−2) ...f (y2|θ, y1)

=
n∏

i=2

1√
2πσ2

exp

[
− (yi − ρyi−1)2

2σ2

]

The log-likelihood is

log f (y1, y2, ...., yn|θ, y1) = − (n − 1)

(
log 2π

2
+ log σ

)
+

n∑
i=2

[
− (yi − ρyi−1)2

2σ2

]

Can easily show OLS provides the MLE for ρ. Generalises to VAR estimation.
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Standard Error Bands for Impulse Response Functions

When you estimate a VAR model such as Zt = AZt−1 + εt via OLS to obtain
estimates Â, you can use the estimated coefficients in Â to construct
estimates of impulse responses I , Â, Â2, Â3, ....

As with the underlying coefficient estimates, the estimated IRFs are just our
best guesses. We would like to know how confident we can be about them.
For example, how sure can we be that the response of a variable to a shock is
always positive?

For this reason, researchers often calculate confidence intervals for each point
in an impulse response graph.

Graphs in VAR papers thus usually show three lines for each impulse response
function: The estimated set of impulse responses at each horizon and lines
above and below showing the upper and lower ends of some confidence
interval. See example on next page.

For some reason, some researchers sometimes show plus or minus one
standard deviation. However, if you want to be confident that responses have
a particular sign, then 10th and 90th percentiles (or 5th and 95th) are a
better idea.
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Example of a Chart With IRF Error Bands

Response of Hours Worked to Technology Shock
Lines Above and Below are 10 and 90 Percentile Error Bands
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Bootstrapping Standard Errors for IRFs

Analytical results can be derived to obtain asymptotic (i.e. large sample)
distributions for impulse response functions. Unfortunately, these distributions
are not very accurate representations of the actual distributions obtained in
finite samples of the size used in most empirical work.

Bootstrap methods are now commonly to derive the standard error bands for
IRFs.

In practice, this is done as follows:

1 Estimate the VAR via OLS and save the errors ε̂t .
2 Randomly sample from these errors to create, for example, 10,000

simulated data series Z∗t = ÂZ∗t−1 + ε∗t .
3 Estimate a VAR model on the simulated data and save the 10,000

different IRFs associated with these estimates.
4 Calculate quantiles of the simulated IRFs, e.g. of the 10,000 estimates of

the effect in period 2 on variable i of shock j .
5 Use the n-th and (100− n)-th quantiles of the simulated IRFs as

confidence intervals.
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A Problem: Lots of Parameters

One problem with classical estimation of VAR systems is that there are lots of
parameters to estimate.

Estimating a Cholesky decomposition VAR with n variables with k lags

involves direct estimation of n2k + n(n−1)
2 parameters.

For 3 variable VAR with one lag, this is already 12 parameters.

Consider a 6 variable VAR with 6 lags: (36)(6) + (6)(5)/2 = 231 coefficients.

Because many of the coefficients are probably really zero or close to it, this
can lead to a severe “over-fitting” problem that can result in poor-quality
estimates and bad forecasts.

This problem can lead researchers to limit the number of variables or number
of lags used, perhaps resulting in mis-specification (leaving out important
variables or missing important dynamics.)

This can also lead to poor inference and bad forecasting performance.

The Bayesian approach to VARs deals with this problem by incorporating
additional information about coefficients to produce models that are not as
highly sensitive to the features of the particular data sets we are using.
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Bayes’s Law

Bayes’s Law is a well-known result from probability theory. It states that

Pr (A | B) ∝ Pr (B | A)Pr(A)

For example, suppose you have prior knowledge that A is a very unlikely event
(e.g. an alien invasion). Then even if you observe something, call it B, that is
likely to occur if A is true (e.g. a radio broadcast of an alien invasion), you
should probably still place a pretty low weight on A being true.

In the context of econometric estimation, we can think of this as relating to
variables Z and parameters θ. When we write

Pr (θ = θ∗ | Z = D) ∝ Pr (Z = D | θ = θ∗)Pr (θ = θ∗)

we are calculating the probability that the a vector of parameters θ takes on a
particular value, θ∗ given the oberved data, D, as a function of two other
probabilities: (i) the probability that Z = D if it was the case that θ = θ∗ and
(ii) the probability that θ = θ∗.
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Bayesian Probability Density Functions

Since coefficients and data in VARs are continuous, we need to write the
Bayes relationship in form of probability density functions:

fθ (θ∗ | D) ∝ fZ (D | θ∗) fθ (θ∗)

The function fZ (D | θ∗) is the likelihood function—for each possible value of
θ∗, it tells you the probability of a given dataset occurring if the true
coefficients θ = θ∗.

The likelihood functions can be calculated once you have made assumptions
about the distributional form of the error process.

Bayesian analysis specifies a “‘prior distribution”, fθ(θ∗), which summarises
the researcher’s pre-existing knowledge about the parameters θ.

This is combined with the likelihood function to produce a “posterior
distribution” fθ (θ∗ | D) that specifies the probability of all possible coefficient
values given both the observed data and the priors.

Posterior distributions cannot generally be calculated analytically. Recent
progress in computing power and numerical algorithms (via “Markov Chain
Monte Carlo” algorithms — see the paper on the website for a discussion)
have made Bayesian methods easier to implement.
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Bayesian Estimation

An obvious way to derive a “best estimator” from the posterior distribution is
to calculate the mean of the distribution:

θ̂ =

∫ ∞
−∞

xfθ (x | D) dx

You can show that this estimator is a weighted average of the “maximum
likelihood estimator” and the mean of the prior distribution, where the
weights depend on the covariances of the likelihood and prior functions: The
more confidence the researcher specifies in the prior, the more weight will be
placed on the prior mean in the estimator.

With normally distributed errors, the maximum likelihood estimates are simply
the OLS estimates, so Bayesian estimators of VAR coefficients are weighted
averages of OLS coefficients and the mean of the prior distribution.

Karl Whelan (UCD) Vector Autoregressions Spring 2016 35 / 38



Bayesian VARs

Typically, researchers specify priors so that coefficients are expected to get
smaller for longer-lagged variables and that cross-equation coefficients (e.g.
effect of lagged X2 on X1) are smaller than own-lag effects.

A common approach is to set the mean of the prior probability distribution for
the first own-lag coefficient to be a large positive figure while setting the prior
mean for all other coefficients to be zero (e.g. the “Minnesota prior”).

The researcher must also decide how confident they are in this prior e.g. how
quickly the prior probabilities move towards zero as you move away from the
prior mean. The “tighter” the prior, the higher will be the weight on the prior
in calculating the posterior Bayesian estimator.

This sounds sort of complicated but in practice these days it is not. Various
computer packages make it easy to specify priors of a particular form, with the
tightness usually summarised by a couple of parameters.

Unlike models estimated by OLS, Bayesian models with Minnesota-style priors
are likely to have most coefficients be close to zero, so they are more
parsimonious and less subject to over-fitting problems. But they achieve this
without arbitrarily setting parameters to zero as would be done in non-VAR
models.
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Large Bayesian VARs

Because of the problem with having to estimate so many parameters, most
VAR papers have tended to use a small number of macroeconomic variables.

However, economists in engaged in forecasting tend to look at a huge range of
variables that are available at a monthly or weekly frequency.

For instance, someone forecasting the US economy may look at employment,
unemployment claims, personal income and consumption, industrial
production, durable goods orders, figures on inventories, trade data, incoming
fiscal data, sentiment surveys and indicators from financial markets.

All could be useful for forecasting but a 20 variable monthly VAR with 12 lags
could not be estimated by traditional methods. How can such a data set be
cut down to a few variables without losing valuable information?

Banbura, Giannone and Reichlin (2008) show that standard Bayesian VAR
methods work very well for forecasting with VAR systems that incorporate
large numbers of variables, provided that the tightness of the priors is
increased as more variables are added.
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Banbura-Giannone-Reichlin Evidence on Forecasting

Karl Whelan (UCD) Vector Autoregressions Spring 2016 38 / 38


	Introducing VAR Methods
	Estimating VARs

