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Moving Beyond VARs

Having described econometric methods for measuring the shocks that hit the
macroeconomy and their dynamic effects, we now turn to developing
theoretical models that can explain these patterns.

This requires models with explicit dynamics and with stochastic shocks.

Obviously, VARs are dynamic stochastic models. VARs, however, are
econometric not theoretical models and they have their limitations.

They do not explictly characterise the underlying decision rules adopted by
firms and households: They don’t tell us why things happen.

This “why” element is crucial if the stories underlying our forecasts or analysis
of policy effects are to be believed.

The goal of the modern DSGE approach is to develop models that can explain
macroeconomic dynamics as well as the VAR approach, but that are based
upon the fundamental idea of optimising firms and households.
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Part I

Introduction to Rational Expectations
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Introducing Expectations

A key sense in which DSGE models differ from VARs is that while VARs just
have backward-looking dynamics, DSGE models backward-loking and
forward-looking dynamics.

The backward-looking dynamics stem, for instance, from identities linking
today’s capital stock with last period’s capital stock and this period’s
investment, i.e. Kt = (1− δ)Kt−1 + It .

The forward-looking dynamics stem from optimising behaviour: What agents
expect to happen tomorrow is very important for what they decide to do
today.

Modelling this idea requires an assumption about how people formulate
expectations.

The DSGE approach relies on the idea that people have so-called rational
expectations.

I will first introduce the idea of rational expectations and describe how to
solve and simulate linear rational expecations models that have both backward
and forward-looking components.
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Rational Expectations

Almost all economic transactions rely crucially on the fact that the economy is
not a “one-period game.” Economic decisions have an intertemporal element
to them.

A key issue in macroeconomics is how people formulate expectations about
the in the presence of uncertainty.

Prior to the 1970s, this aspect of macro theory was largely ad hoc. Generally,
it was assumed that agents used some simple extrapolative rule whereby the
expected future value of a variable was close to some weighted average of its
recent past values.

This approach criticised in the 1970s by economists such as Robert Lucas and
Thomas Sargent. Lucas and Sargent instead promoted the use of an
alternative approach which they called “rational expectations.”

In economics, rational expectations usually means two things:

1 They use publicly available information in an efficient manner. Thus,
they do not make systematic mistakes when formulating expectations.

2 They understand the structure of the model economy and base their
expectations of variables on this knowledge.
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Rational Expectations as a Baseline

Rational expectations is clearly a strong assumption.

The structure of the economy is complex and in truth nobody truly knows
how everything works.

But one reason for using rational expectations as a baseline assumption is that
once one has specified a particular model of the economy, any other
assumption about expectations means that people are making systematic
errors, which seems inconsistent with rationality.

Still, behavioural economists have now found lots of examples of deviations
from rationality in people’s economic behaviour.

But rational expectations requires one to be explicit about the full limitations
of people’s knowledge and exactly what kind of mistakes they make. And
while rational expectations is a clear baseline, once one moves away from it
there are lots of essentially ad hoc potential alternatives.

At least at present, the profession has no clear agreed alternative to rational
expectations as a baseline assumption.

And like all models, rational expectations models need to be assessed on the
basis of their ability to fit the data.
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Part II

Single Stochastic Difference Equations
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First-Order Stochastic Difference Equations

Lots of models in economics take the form

yt = xt + aEtyt+1

The equation just says that y today is determined by x and by tomorrow’s
expected value of y . But what determines this expected value? Rational
expectations implies a very specific answer.

Under rational expectations, the agents in the economy understand the
equation and formulate their expectation in a way that is consistent with it:

Etyt+1 = Etxt+1 + aEtEt+1yt+2

This last term can be simplified to

Etyt+1 = Etxt+1 + aEtyt+2

because EtEt+1yt+2 = Etyt+2.

This is known as the Law of Iterated Expectations: It is not rational for me to
expect to have a different expectation next period for yt+2 than the one that I
have today.
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Repeated Substitution

Substituting this into the previous equation, we get

yt = xt + aEtxt+1 + a2Etyt+2

Repeating this by substituting for Etyt+2, and then Etyt+3 and so on gives

yt = xt + aEtxt+1 + a2Etxt+2 + ....+ aN−1Etxt+N−1 + aNEtyt+N

Which can be written in more compact form as

yt =
N−1∑
k=0

akEtxt+k + aNEtyt+N

Usually, it is assumed that

lim
N→∞

aNEtyt+N = 0

So the solution is

yt =
∞∑
k=0

akEtxt+k

This solution underlies the logic of a very large amount of modern
macroeconomics.
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Example: Asset Pricing

Consider an asset that can be purchased today for price Pt and which yields a
dividend of Dt . Suppose there is a close alternative to this asset that will yield
a guaranteed rate of return of r .

Then, for a risk neutral investor will only hold the asset if it yields the same
rate of return, i.e. if

Dt + EtPt+1

Pt
= 1 + r

This can be re-arranged to give

Pt =
Dt

1 + r
+

EtPt+1

1 + r

The repeated substitution solution is

Pt =
∞∑
k=0

(
1

1 + r

)k+1

EtDt+k

This equation, which states that asset prices should equal a discounted
present-value sum of expected future dividends, is usually known as the
dividend-discount model.
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“Backward” Solutions

The model
yt = xt + aEtyt+1

can also be written as
yt = xt + ayt+1 + aεt+1

where εt+1 is a forecast error that cannot be predicted at date t.

Moving the time subscripts back one period and re-arranging this becomes

yt = a−1yt−1 − a−1xt−1 − εt

This backward-looking equation which can also be solved via repeated
substitution to give

yt = −
∞∑
k=0

a−kεt−k −
∞∑
k=1

a−kxt−k
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Choosing Between Forward and Backward Solutions

The forward and backward solutions are both correct solutions to the
first-order stochastic difference equation (as are all linear combinations of
them). Which solution we choose to work with depends on the value of the
parameter a.

If |a| > 1, then the weights on future values of xt in the forward solution will
explode. In this case, it is most likely that the forward solution will not
converge to a finite sum. Even if it does, the idea that today’s value of yt
depends more on values of xt far in the distant future than it does on today’s
values is not one that we would be comfortable with. In this case, practical
applications should focus on the backwards solution.

However, the equation holds for any set of shocks εt such that Et−1εt = 0. So
the solution is indeterminate: We can’t actually predict what will happen with
yt even if we know the full path for xt .

But if |a| < 1 then the weights in the backwards solution are explosive and the
forward solution is the one to focus on. Also, this solution is determinate.
Knowing the path of xt will tell you the path of yt .
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Rational Bubbles

In most cases, it is assumed that |a| < 1.

In this case, the assumption that

lim
N→∞

aNEtyt+N = 0

amounts to a statement that yt can’t grow too fast.

What if it doesn’t hold? Then the solution can have other elements.

Let

y∗t =
∞∑
k=0

akEtxt+k

And let yt = y∗t + bt be any other solution. The solution must satisfy

y∗t + bt = xt + aEty
∗
t+1 + aEtbt+1

By construction, one can show that y∗t = xt + aEty
∗
t+1.
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Rational Bubbles, Continued

This means the additional component satisfies

bt = aEtbt+1

Because |a| < 1, this means b is always expected to get bigger in absolute
value, going to infinity in expectation. This is a bubble.

Note that the term bubbles is usually associated with irrational behaviour by
investors. But, in this model, the agents have rational expectations. This is a
rational bubble.

There may be restrictions in the real economy that stop b growing forever.
But constant growth is not the only way to satisfy bt = aEtbt+1. The
following process also works:

bt+1 =

{
(aq)−1 bt + et+1 with probability q
et+1 with probability 1− q

where Etet+1 = 0.

This is a bubble that everyone knows is going to crash eventually. And even
then, a new bubble can get going. Imposing limN→∞ aNEtyt+N = 0 rules out
bubbles of this (or any other) form.
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From Structural to Reduced Form Relationships

The solution

yt =
∞∑
k=0

akEtxt+k

provides useful insights into how the variable yt is determined.

However, without some assumptions about how xt evolves over time, it
cannot be used to give precise predictions about they dynamics of yt .

Ideally, we want to be able to simulate the behaviour of yt on the computer.

One reason there is a strong linkage between DSGE modelling and VARs is
that this question is usually addressed by assuming that the exogenous
“driving variables” such as xt are generated by backward-looking time series
models like VARs.

Consider for instance the case where the process driving xt is

xt = ρxt−1 + εt

where |ρ| < 1.
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From Structural to Reduced Form Relationships, Continued

In this case, we have
Etxt+k = ρkxt

Now the model’s solution can be written as

yt =

[ ∞∑
k=0

(aρ)k
]
xt

Because |aρ| < 1, the infinite sum converges to
∞∑
k=0

(aρ)k =
1

1− aρ

Remember this identity from the famous Keynesian multiplier formula.

So, in this case, the model solution is

yt =
1

1− aρ
xt

Macroeconomists call this a reduced-form solution for the model: Together
with the equation descrining the evolution of xt , it can easily be simulated on
a computer.
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The DSGE Recipe

While this example is obviously a relatively simple one, it illustrates the
general principal for getting predictions from DSGE models:

1 Obtain structural equations involving expectations of future driving
variables, (in this case the Etxt+k terms).

2 Make assumptions about the time series process for the driving variables
(in this case xt)

3 Solve for a reduced-form solution than can be simulated on the
computer along with the driving variables.

Finally, note that the reduced-form of this model also has a VAR-like
representation, which can be shown as follows:

yt =
1

1− aρ
(ρxt−1 + εt)

= ρyt−1 +
1

1− aρ
εt

So both the xt and yt series have purely backward-looking representations.
Even this simple model helps to explain how theoretical models tend to
predict that the data can be described well using a VAR.
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Another Example: The Permanent Income Hypothesis

Consider, for example, a simple “permanent income” model in which
consumption depends on a present discounted value of after-tax income

ct = γ

∞∑
k=0

βkEtyt+k

Suppose that income has followed the process

yt = (1 + g) yt−1 + εt

In this case, we have
Etyt+k = (1 + g)k yt

So the reduced-form representation is

ct = γ

[ ∞∑
k=0

(β (1 + g))k
]
yt

Assuming that β (1 + g) < 1, this becomes

ct =
γ

1− β (1 + g)
yt
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The Lucas Critique

Think about this example. The structural equation

ct = γ

∞∑
k=0

βkEtyt+k

is always true for this model

But the reduced-form representation

ct =
γ

1− β (1 + g)
yt

depends on the process for yt taking a particular form. Should that process
change, the reduced-form process will change.

In a famous 1976 paper, Robert Lucas pointed out that the assumption of
rational expectations implied that the coefficients in reduced-form models
would change if expectations about the future changed.

Lucas stressed that this could make reduced-form econometric models based
on historical data useless for policy analysis. This problem is now known as
the Lucas critique of econometric models.

Karl Whelan (UCD) Models with Rational Expectations Spring 2016 19 / 36



An Example: Temporary Tax Cuts

Suppose the government is thinking about a temporary one-period income tax
cut. Consider yt to be after-tax labour income, so it would be temporarily
boosted by the tax cut.

They ask their economic advisers for an estimate of the effect on consumption
of the tax cut. The advisers run a regression of consumption on after-tax
income.

If, in the past, consumers had generally expected income growth of g , then
these regressions will produce a coefficient of approximately γ

1−β(1+g) on

income. So, the advisers conclude that for each €1 of income produced by
the tax cut, there will be an increase in consumption of € γ

1−β(1+g) .

But if the households have rational expectations, then then each €1 of tax
cut will produce only €γ of extra consumption.

Suppose β = 0.95 and g = 0.02. In this case, the advisor concludes that each
unit of tax cuts is worth extra 32γ (= γ

1−β(1+g) ) in consumption. In reality, the

tax cut will produce only γ units of extra consumption. Being off by a factor
of 32 constitutes a big mistake in assessing the effect of this policy.
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The Lucas Critique and the Limitations of VAR Analysis

The tax cut example gets the logic of the critique across but perhaps not its
generality.

Today’s DSGE models feature policy equations that describe how monetary
policy is set via rules relating interest rates to inflation and unemployment;
how fiscal variables depends on other macro variables; what the exchange rate
regime is.

These models all feature rational expectations, so changes to these policy
rules will be expected to alter the reduced-form VAR-like structures associated
with these economies.

This is an important “selling point” for modern DSGE models. These models
can explain why VARs fit the data well, but they can be considered superior
tools for policy analysis.

They explain how reduced-form VAR-like equations are generated by the
processes underlying policy and other driving variables. However, while VAR
models do not allow reduced-form correlations change over time, a fully
specified DSGE model can explain such patterns as the result of structural
changes in policy rules.
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Second-Order Stochastic Difference Equations

Variables that are characterized by

yt =
∞∑
k=0

akEtxt+k

are jump variables. They only depends on what’s happening today and what’s
expected to happen tomorrow. If expectations about the future change, they
will jump. Nothing that happened in the past will restrict their movement.

This may be an ok characterization of financial variables like stock prices but
it’s harder to argue with it as a description of variables in the real economy
like employment, consumption or investment.

Many models in macroeconomics feature variables which depend on both the
expected future values and their past values. They are characterized by
second-order difference equations of the form

yt = ayt−1 + bEtyt+1 + xt
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Solving Second-Order Stochastic Difference Equations

Here’s one way of solving second-order SDEs. Suppose there was a value λ
such that

vt = yt − λyt−1
followed a first-order stochastic difference equation of the form

vt = αEtvt+1 + βxt

We’d know how to solve that for vt and then back out the values for yt .

From the fact that yt = vt + λyt−1, we can re-write the original equation as

vt + λyt−1 = ayt−1 + b (Etvt+1 + λyt) + xt

= ayt−1 + bEtvt+1 + bλ (vt + λyt−1) + xt

This re-arranges to give

(1− bλ)vt = bEtvt+1 + xt +
(
bλ2 − λ+ a

)
yt−1
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Solving Second-Order Stochastic Difference Equations

By definition, λ was a number such that the vt it defined followed a first-order
stochastic difference equation. This means that λ satisfies:

bλ2 − λ+ a = 0

This is a quadratic equation, so there are two values of λ that satisfy it. For
either of these values, we can characterize vt by

vt =
b

1− bλ
Etvt+1 +

1

1− bλ
xt

=
1

1− bλ

∞∑
k=0

(
b

1− bλ

)k

Etxt+k

And yt obeys

yt = λyt−1 +
1

1− bλ

∞∑
k=0

(
b

1− bλ

)k

Etxt+k

Usually, only one of the potential values of λ is less than one in absolute
value, so this delivers the unique stable solution.
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Example: A Hybrid New Keynesian Phillips Curve

Last term, we introduced the so-called New Keynesian Phillips curve

πt = βEtπt+1 + νxt ,

where xt is a measure of inflationary pressures.

Many empirical studies have suggested that this formulation has difficulty in
explaining the persistence observed in the inflation data.

Some have proposed a “hybrid” variant:

πt = γf Etπt+1 + γbπt−1 + κxt

with the lagged element coming from some fraction of the population being
non-rational price-setters who rely on past inflation for their current behaviour.

The solution for this model takes the form

πt = λπt−1 +
κ

1− γf λ

∞∑
k=0

(
γf

1− γf λ

)k

Etxt+k

where λ is a solution to
γf λ

2 − λ+ γb = 0
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Example: A Hybrid New Keynesian Phillips Curve

In general, there will be two possible values of λ to solve the so-called
characteristic equation of the model. Usually, only one of these values will
work as the λ in this formulation.

Consider the case where the model is

πt = θEtπt+1 + (1− θ)πt−1 + κxt

In this case, the possible solutions of the characteristic equation are λ1 = 1
and λ2 = 1−θ

θ .

If 0 < θ ≤ 0.5, then the stable solution is

πt = πt−1 +
κ

1− θ

∞∑
k=0

(
θ

1− θ

)k

Etxt+k

Alternatively if 0.5 ≤ θ < 1, then the stable solution is

πt =

(
1− θ
θ

)
πt−1 +

κ

θ

∞∑
k=0

Etxt+k
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Part III

Systems of Stochastic Difference Equations
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Systems of Rational Expectations Equations

So far, we have only looked at a single equation linking two variables.
However, it turns out that the logic of the first-order stochastic difference
equation underlies the solution methodology for just about all rational
expectations models.

Suppose one has a vector of variables

Zt =


z1t
z2t
.
znt


It turns out that a lot of macroeconomic models can be represented by an
equation of the form

Zt = BEtZt+1 + Xt

where B is an n × n matrix. The logic of repeated substitution can also be
applied to this model, to give a solution of the form

Zt =
∞∑
k=0

BkEtXt+k
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Eigenvalues

As with the single-equation model, this will only give a stable non-explosive
solution under certain conditions.

A value λi is an eigenvalue of the matrix B if there exists a vector ei (known
as an eigenvector) such that

Bei = λiei

Many n × n matrices have n distinct eigenvalues. Denote by P the matrix
that has as its columns n eigenvectors corresponding to these eigenvalues. In
this case,

BP = PΩ

where

Ω =


λ1 0 0 0
0 λ2 0 0
0 0 0
0 0 0 λn


is a diagonal matrix of eigenvalues.
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Stability Condition

Note now that this equation implies that

B = PΩP−1

This tells us something about the relationship between eigenvalues and higher
powers of B because

Bn = PΩnP−1 = P


λn1 0 0 0
0 λn2 0 0
0 0 0
0 0 0 λnn

P−1

So, the difference between lower and higher powers of B is that the higher
powers depend on the eigenvalues taken to the power of n. If all of the
eigenvalues are inside the unit circle (i.e. less than one in absolute value) then
all of the entries in Bn will tend towards zero as n→∞.

So, a condition that ensures that a model of the form Zt = BEtZt+1 + Xt has
a unique stable forward-looking solution is that the eigenvalues of B are all
inside the unit circle.
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How Are Eigenvalues Calculated

Consider, for example, a 2× 2 matrix.

A =

(
a11 a12
a21 a22

)
Suppose A has two eigenvalues, λ1 and λ2 and define λ as the vector

λ =

(
λ1
λ2

)
The fact that there are eigenvectors which when multiplied by A− λI equal a
vector of zeros means that the determinant of the matrix

A− λI =

(
a11 − λ1 a12

a21 a22 − λ2

)
equals zero.

So solving the quadratic formula

(a11 − λ1a12) (a22 − λ2)− a12a21 = 0

gives the two eigenvalues of A.
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More General Models: The Binder-Pesaran Method

Consider a vector Zt characterized by

Zt = AZt−1 + BEtZt+1 + HXt

The restriction to one-lag one-lead form is only apparent, and the companion
matrix trick can be used to allow this model to represent models with n leads
and lags. In this sense, this equation summarizes all possible linear rational
expectations models.

Binder and Pesaran (1996) solved this model in a manner exactly analagous
to the second-order difference equation discussed earlier. Find a matrix C
such that Wt = Zt − CZt−1 obeys a first-order matrix equation of the form

Wt = FEtWt+1 + GXt

In other words, we transform the problem of solving the “second-order”
system in equation into a simpler first-order system.
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More General Models: The Binder-Pesaran Method

What must the matrix C be? Using the fact that

Zt = Wt + CZt−1

The model can be re-written as

Wt + CZt−1 = AZt−1 + B (EtWt+1 + CZt) + HXt

= AZt−1 + B (EtWt+1 + C (Wt + CZt−1)) + HXt

This re-arranges to

(I − BC )Wt = BEtWt+1 +
(
BC 2 − C + A

)
Zt−1 + HXt

Because C is the matrix that such that Wt follows a first-order
forward-looking matrix equation (with no extra Zt−1 terms) it follows that

BC 2 − C + A = 0

This “matrix quadratic equation” can be solved to give C . Solving these
equations is non-trivial (see paper on the website). One method uses the fact
that C = BC 2 + A, to solve for it iteratively as follows. Provide an initial
guess, say C0 = I , and then iterate on Cn = BC 2

n−1 + A until all the entries in
Cn converge.
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Model Solution

Once we know C , we have

Wt = FEtWt+1 + GXt

where

F = (I − BC )−1 B

G = (I − BC )−1 H

Assuming the all the eigenvalues of F are inside the unit circle, this has a
stable forward-looking solution

Wt =
∞∑
k=0

F kEt (GXt+k)

which can be written in terms of the original equation as

Zt = CZt−1 +
∞∑
k=0

F kEt (GXt+k)
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Reduced-Form Representation

Suppose we assume that the driving variables Xt follow a VAR representation
of the form

Xt = DXt−1 + εt

where D has eigenvalues inside the unit circle.

This implies EtXt+k = DkXt , so the model solution is

Zt = CZt−1 +

[ ∞∑
k=0

F kGDk

]
Xt

The infinite sum in this equation will converge to a matrix P, so the model
has a reduced-form representation

Zt = CZt−1 + PXt

which can be simulated along with the VAR process for the driving variables.

This provides a relatively simple recipe for simulating DSGE models: Specify
the A, B and H matrices; solve for C , F and G ; specify a VAR process for the
driving variables; and then obtain the reduced-form representations.
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General Formulation

The equations we get from models will often contain multiple values of
different variables at time t.

This isn’t a problem. We can plug the model into a computer program as

KZt = AZt−1 + BEtZt+1 + HXt

Then the program can multiply both sides by K−1 to give

Zt = K−1AZt−1 + K−1BEtZt+1 + K−1HXt

Which is a format that can be solved using the Binder-Pesaran method.

All of this seems a bit complicated. In practice, it’s not so hard. You figure
out what your model implies in terms of the K , A, B and H matrices (most of
the entries are usually zero). Then the computer gives you representation of
the form

Zt = CZt−1 + PXt

Xt = DXt−1 + εt

which you can start to do calculations with.
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