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Working Through A DSGE Model

We have described methods for solving and simulating linear models with lags,
leads and rational expectations.

Now it is time to go through a particular model to see how these methods get
combined with economic theory.

Specifically, we will work through a version of the Real Business Cycle (RBC)
model—introduced in a famous 1982 paper by Finn Kydland and Edward
Prescott—is the original DSGE model.1

We will set out a basic RBC model and discuss how the model’s first-order
conditions can be turned into a system of linear difference equations of the
form we know how to solve.

This will require explaining another new technique, known as log-linearization.

While many now question the specific assumptions underlying the early RBC
models, the methodology has endured.

1“Time to Build and Aggregate Fluctuations,” Econometrica, November 1982,
Volume 50, pages 1345-1370. This paper was cited in the 2004 Nobel prize award given
to Kydland and Prescott.
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Part I

Introduction to the RBC Model
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An RBC Model

The basic RBC model assume perfectly functioning competitive markets, so
the outcomes generated by decentralized decisions by firms and households
can be replicated as the solution to a social planner problem.

The social planner wants to maximize

Et

[ ∞∑
i=0

βi (U(Ct+i ) − V (Nt+i ))

]
where Ct is consumption, Nt is hours worked, and β is the representative
household’s rate of time preference.

The economy faces constraints described by

Yt = Ct + It = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

and a process for the technology term At , usually a log-linear AR(1):

logAt = (1 − ρ) logA∗ + ρ logAt−1 + εt
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Discussion of the RBC Approach: 1

The RBC approach is often criticised but it is worth understanding the reasons
why it is a useful baseline model.

Criticism: Perfect Markets and Rational Expectations:

I Can the economy really be characterized as a perfectly competitive
market equilibrium solution describing the behaviour of a set of
completely optimizing rational agents? Surely we know that markets are
not always competitive and surely people are not always completely
rational in their economic decisions?

The RBC model should be seen as a benchmark against which more
complicated models can be assessed. If a model with optimizing agents and
instantaneous market clearing can explain the business cycle, then can market
imperfections such as sticky prices really be seen as crucial to understanding
macroeconomic fluctuations?

Imperfect competition means the decentralized market outcome cannot be
characterized as the outcome of a social planner problem. So, one needs to
derive the FOCs from separate modelling of the decisions of firms and
households. But this is easily done.
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Discussion of the RBC Approach: 2

Criticism: Monetary and Fiscal Policy :

I RBC models exhibit complete monetary neutrality, so there is no role at
all for monetary policy, something which many people think is crucial to
understanding the macroeconomy. We haven’t put government spending
in this model, but if we did, the model would exhibit Ricardian
equivalence, so the effects of fiscal policy would be different from what
most people imagine them to be.

However, most modern models that build on the RBC approach have
introduced mechanisms that allow monetary and fiscal policy to have
Keynesian effects. For instance, most of the DSGE models used these days
feature various forms of sticky prices and sticky wages, which lead to real
effects for monetary policy.
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Discussion of the RBC Approach: 3

Criticism: Skepticism about Technology Shocks:

I RBC models give primacy to technology shocks as the source of
economic fluctuations (all variables apart from At are deterministic). But
what are these shocks?

I Is it really credible that all economic fluctuations, including recessions,
are just an optimal response to technology shocks? If we were
experiencing these big shocks wouldn’t we be reading about them in the
newspapers? Wouldn’t recessions have to be periods in which their is
outright technological regress, so that (for some reason) firms are using
less efficient technologies than previously—is this credible?

Technology shocks are probably more important than one might think at first.
Growth theory teaches us that increases in TFP are the ultimate source of
long-run growth in output per hour. Is there any particular reason to think
that these increases have to take place in a steady trend-like manner? Put
this way, random fluctuations in TFP growth doesn’t seem so strange. Also,
at least in theory, RBC models could generate recessions without outright
declines in technology. This can happen if the elasticity of output with respect
to technology is greater than one.
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Part II

Solving the RBC Model
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A Technical Note

Our problem involves maximizing

Et

[ ∞∑
i=0

βi (U(Ct+i ) − V (Nt+i ))

]
where the uncertainty here relates to not knowing future values of At .

Technically, the best way to solve these problems is using stochastic dynamic
programming but I don’t have time to teach that. Instead, I will effectively
treat it as a deterministic problem and then substitute EtXt+i for Xt+i .

Justification? Suppose

G (x) =
N∑

k=1

pkF (ak , x)

This is maximized by setting

G ′ (x) =
N∑

k=1

pkF
′ (ak , x) = EtF

′ (x) = 0

So, the FOCs for for maximizing EtF (x) are just EtF
′ (x) = 0.

Karl Whelan (UCD) Real Business Cycles Spring 2016 9 / 38



Formulating the Social Planner’s Problem

Remember our two constraints

Yt = Ct + It = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

We can simplify the problem by combining them into one equation:

AtK
α
t−1N

1−α
t = Ct + Kt − (1 − δ)Kt−1

We can then formulate the social planner’s problem as a Lagrangian problem
involving picking a series of values for consumption and labour, subject to
satisfying a series of constraints of the form just described:

L = Et

∞∑
i=0

βi [U(Ct+i ) − V (Nt+i )]

+Et

∞∑
i=0

βiλt+i

[
At+iK

α
t+i−1N

1−α
t+i + (1 − δ)Kt+i−1 − Ct+i − Kt+i

]
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How to Get the First-Order Conditions

This equation might look a bit intimidating. It involves an infinite sum, so
technically there is an infinite number of first-order conditions for current and
expected future values of Ct ,Kt and Nt .

But the problem is less hard than this makes it sound, Note that the time-t
variables appear in this sum as

U(Ct) − V (Nt) + λt
(
AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1

)
+βEt

[
λt+1

(
At+1K

α
t N

1−α
t+1 + (1 − δ)Kt

)]
After that, the time-t variables don’t ever appear again. So, the FOCs for the
time-t variables consist of differentiating this equation with respect to these
variables and setting the derivatives equal to zero.

Then, the time t + n variables appear exactly as the time t variables do,
except that they are in expectation form and they are multiplied by the
discount rate βn. But this means the FOCs for the time t + n variables will be
identical to those for the time t variables. So differentiating this equation
gives us the equations for the optimal dynamics at all times.
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The First-Order Conditions

Differentiating

U(Ct) − V (Nt) + λt
(
AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1

)
+βEt

[
λt+1

(
At+1K

α
t N

1−α
t+1 + (1 − δ)Kt

)]
We get following first-order conditions:

∂L

∂Ct
: U ′ (Ct) − λt = 0

∂L

∂Kt
: −λt + βEt

[
λt+1

(
α
Yt+1

Kt
+ 1 − δ

)]
= 0

∂L

∂Nt
: −V ′ (Nt) + (1 − α)λt

Yt

Nt
= 0

∂L

∂λt
: AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1 = 0
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The Keynes-Ramsey Condition

Define the marginal value of an additional unit of capital next year as

Rt+1 = α
Yt+1

Kt
+ 1 − δ

Then the FOC for capital can be written as

λt = βEt (λt+1Rt+1)

This can then be combined with the FOC for consumption to give

U ′(Ct) = βEt [U ′(Ct+1)Rt+1]

Interpretation:

I Decrease consumption by ∆ today, at a loss of U ′(Ct)∆ in utility.
I Invest to get Rt+1∆ tomorrow.
I Worth βEt [U ′(Ct+1)Rt+1∆] in terms of today’s utility.
I Along an optimal path, must be indifferent.
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CRRA Consumption and Separable Consumption-Leisure

We are going to work with a utility function of the form:

U(Ct) − V (Nt) =
C 1−η
t

1 − η
− aNt

This formulation of the Constant Relative Risk Aversion (CRRA) utility from
consumption and separate disutility from labour turns out to be necessary for
the model to have a stable growth path solution.

The Keynes-Ramsey condition becomes

C−ηt = βEt

(
C−ηt+1Rt+1

)
And the condition for optimal hours worked becomes

−a + (1 − α)C−ηt

Yt

Nt
= 0
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The Full Set of Model Equations

The RBC model can then be defined by the following six equations (three
identities describing resource constraints, one a definition, and two FOCs
describing optimal behaviour)

Yt = Ct + It

Yt = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

Rt = α
Yt

Kt−1
+ 1 − δ

C−ηt = βEt

(
C−ηt+1Rt+1

)
Yt

Nt
=

a

1 − α
Cη
t

and the process for the technology variable

logAt = (1 − ρ) logA∗ + ρ logAt−1 + εt

These are not a set of linear difference equations, but a mix of both linear and
nonlinear equations: Haven’t I been saying that DSGE modelling is all about
sets of linear difference equations?
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Part III

Log-Linearization
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Linearization

In general, nonlinear systems like this cannot be solved analytically. However,
it turns out their solution can be very well approximated by a corresponding
set of linear equations.

The idea is to use Taylor series approximations. In general, any nonlinear
function F (xt , yt) can be approximated around any point (x∗t , y

∗
t ) using the

formula

F (xt , yt) = F (x∗t , y
∗
t ) + Fx (x∗t , y

∗
t ) (xt − x∗t ) + Fy (x∗t , y

∗
t ) (yt − y∗t )

+Fxx (x∗t , y
∗
t ) (xt − x∗t )2 + Fxy (x∗t , y

∗
t ) (xt − x∗t ) (yt − y∗t )

+Fyy (x∗t , y
∗
t ) (yt − y∗t )2 + ...

If the gap between (xt , yt) and (x∗t , y
∗
t ) is small, then terms in second and

higher powers and cross-terms will all be very small and can be ignored,
leaving something like

F (xt , yt) ≈ α + β1xt + β2yt

But if we “linearize” around a point that (xt , yt) is far away from, then this
approximation will not be accurate.
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Log-Linearization

DSGE models use a particular version of this technique. They take logs and
then linearize the logs of variables around a simple “steady-state” path in
which all real variables are growing at the same rate.

The steady-state path is relevant because the stochastic economy will, on
average, tend to fluctuate around the values given by this path, making the
approximation an accurate one.

This gives us a set of linear equations in the deviations of the logs of these
variables from their steady-state values.

Remember that log-differences are approximately percentage deviations

logX − logY ≈ X − Y

Y

so this approach gives us a system that expresses variables in terms of their
percentage deviations from the steady-state paths. It can be thought of as
giving a system of variables that represents the business-cycle component of
the model. Coefficients are elasticities and IRFs are easy to interpret.

Also log-linearization is easy. It doesn’t require taking lots of derivatives.
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How Log-Linearization Works

We will use lower-case letters to define log-deviations of variables from their
steady-state values.

xt = logXt − logX ∗

The key to the log-linearization method is that every variable can be written as

Xt = X ∗
Xt

X ∗
= X ∗ext

The big trick is that a first-order Taylor approximation of ext is given by

ext ≈ 1 + xt

So, we can write variables as

Xt ≈ X ∗ (1 + xt)

The second trick is for variables multiplying each other such as

XtYt ≈ X ∗Y ∗ (1 + xt) (1 + yt) ≈ X ∗Y ∗ (1 + xt + yt)

i.e. you set terms like xtyt = 0 because we are looking at small deviations
from steady-state and multiplying these small deviations together one gets a
term close to zero.
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Anything Else?

No, that’s it.

Substitute these approximations for the variables in the model, lots of terms
end up canceling out, and when you’re done you’ve got a system in the
deviations of logged variables from their steady-state values.

The paper on the reading list by Harald Uhlig discusses this stuff in a bit more
detail and provides more examples.

But the best way to understand this stuff is to see it at work, so let’s work
through some examples from the RBC model.

Note that we have assumed that technology (the source of all long-run growth
in this economy) is given by

at = ρat−1 + εt

so there is no trend growth in this economy.

This means that the steady-state variables are all constants. Technically, there
is no great difficulty in modelling an economy with trend growth but this case
is a bit simpler.
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Log-Linearization Example 1

Start with
Yt = Ct + It

Re-write it as
Y ∗eyt = C∗ect + I ∗e it

Using the first-order approximation, this becomes

Y ∗ (1 + yt) = C∗ (1 + ct) + I ∗ (1 + it)

Note, though, that the steady-state terms must obey identities so

Y ∗ = C∗ + I ∗

Canceling these terms on both sides, we get

Y ∗yt = C∗ct + I ∗it

which we will write as

yt =
C∗

Y ∗
ct +

I ∗

Y ∗
it
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Log-Linearization Example 2

Now consider
Yt = AtK

α
t−1N

1−α
t

This can be re-written in terms of steady-states and log-deviations as

Y ∗eyt = (A∗eat ) (K∗)α eαkt−1 (N∗)1−α e(1−α)nt

Again, use the fact the steady-state values obey identities so that

Y ∗ = A∗ (K∗)α (N∗)1−α

So canceling gives
eyt = eat eαkt−1e(1−α)nt

Using first-order Taylor approximations, this becomes

(1 + yt) = (1 + at) (1 + αkt−1) (1 + (1 − α) nt)

Ignoring cross-products of the log-deviations, this simplifies to

yt = at + αkt−1 + (1 − α) nt
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The Full Log-Linearized System

Once all the equations have been log-linearized, we have a system of seven
equations of the form

yt =
C∗

Y ∗
ct +

I ∗

Y ∗
it

yt = at + αkt−1 + (1 − α) nt

kt =
I ∗

K∗
it + (1 − δ) kt−1

nt = yt − ηct

ct = Etct+1 −
1

η
Etrt+1

rt =

(
α

R∗
Y ∗

K∗

)
(yt − kt−1)

at = ρat−1 + εt

We are nearly ready to put the model on the computer. However, notice that
three of the equations have coefficients that are values relating to the
steady-state path. These need to be calculated.
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Part IV

Calculating the Steady-State
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The Steady-State Interest Rate

We need to calculate C∗

Y ∗ , I∗

K∗ and α
R∗

Y ∗

K∗

We do this by taking the original non-linearized RBC system and figuring out
what things look like along a zero growth path.

Start with the steady-state interest rate. This is linked to consumption
behaviour via the so-called Euler equation (or Keynes-Ramsey condition):

1 = βEt

((
Ct

Ct+1

)η

Rt+1

)
Because we have no trend growth in technology in our model, the steady-state
features consumption, investment, and output all taking on constant values
with no uncertainty.

Thus, in steady-state, we have C∗t = C∗t+1 = C∗, so

R∗ = β−1

In a no-growth economy, the rate of return on capital is determined by the
rate of time preference.
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Other Steady-State Calculations

Take the equation for the rate of return on capital

Rt = α
Yt

Kt−1
+ 1 − δ

In steady-state, we have

R∗ = β−1 = α
Y ∗

K∗
+ 1 − δ

So, in steady-state, we have

Y ∗

K∗
=
β−1 + δ − 1

α

Together with the steady-state interest equation, this tells us that

α

R∗
Y ∗

K∗
= αβ

(
β−1 + δ − 1

α

)
= 1 − β (1 − δ)

which is the one of the steady-state values required
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Investment-Capital and Investment-Output Ratios

Next, we use the identity

Kt = It + (1 − δ)Kt−1

And the fact that in steady-state we have K∗t = K∗t−1 = K∗, to give

I ∗

K∗
= δ

which was also required.

This can then be combined with the previous steady-state ratio to give

I ∗

Y ∗
=

I∗

K∗

Y ∗

K∗

=
αδ

β−1 + δ − 1

And obviously
C∗

Y ∗
= 1 − αδ

β−1 + δ − 1

which gives us the other required steady-state ratios.

Karl Whelan (UCD) Real Business Cycles Spring 2016 27 / 38



The Final System

Using these steady-state identities, our system becomes

yt =

(
1 − αδ

β−1 + δ − 1

)
ct +

(
αδ

β−1 + δ − 1

)
it

yt = at + αkt−1 + (1 − α) nt

kt = δit + (1 − δ) kt−1

nt = yt − ηct

ct = Etct+1 −
1

η
Etrt+1

rt = (1 − β (1 − δ)) (yt − kt−1)

at = ρat−1 + εt

This is written in the standard format for systems of linear stochastic difference
equations. So, once we make assumptions about the underlying parameter values
(α, β, δ, η, ρ) we can apply solution algorithms such as the Binder-Pesaran
program to obtain a reduced-form solution, and thus simulate the model on the
computer.
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Part V

Simulating the Model
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Parameterizing, Simulating and Checking IRFs

The next few pages show some charts the illustrate the properties of this
model.

The uses parameter values intended for analysis of quarterly time series:
α = 1

3 , β = 0.99, δ = 0.015, ρ = 0.95, and η = 1.

The first chart shows results from a 200-period simulation of this model. It
demonstrates the main successful feature of the RBC model: It generates
actual business cycles and they don’t look too unrealistic.

In particular, reasonable parameterizations of the model can roughly match
the magnitude of observed fluctuations in output, and the model can match
the fact that investment is far more volatile than consumption.

In the early days of RBC research, this ability to match business cycle
dynamics was considered a major strength, and many economists began to
claim that there was no need for market imperfections to explain business
cycles.
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RBC Models Can Generate Cycles with Volatile Investment
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25 50 75 100 125 150 175 200
-15

-10

-5

0

5

10

15

20

Karl Whelan (UCD) Real Business Cycles Spring 2016 31 / 38



The RBC Model’s Propagation Mechanisms

Despite this success, these RBC models have still come in for some criticism.

One reason is that they have not quite lived up to the hype of their early
advocates. Part of that hype stemmed from the idea that RBC models
contained important propagation mechanisms for turning technology shocks
into business cycles.

The idea was that increases in technology induced extra output through
higher capital accumulation and by inducing people to work more.

In other words, some of the early research suggested that even in a world of
iid technology levels, one would expect RBC models to still generate business
cycles.

However, the figure on the next page shows that output fluctuations in this
model follow technology fluctuations quite closely: This shows that these
additional propagation mechanisms are quite weak.
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RBC Cycles Rely Heavily on Technology Fluctuations

Output Technology
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Autocorrelated Growth and Hump-Shaped IRFs

Cogley and Nason (AER, 1995) noted another fact about business cycles that
the RBC model does not match: Output growth is positively autocorrelated
(not very—autocorrelation coefficient of 0.34—but statistically significant).

But RBC models do not generate this pattern: See the figure on the next
page. They can only do so if one simulates a technology process that has a
positively autocorrelated growth rate.

Cogley and Nason relate this back to the IRFs generated by RBC models. The
figure on page 36 shows the responses of output, consumption, investment,
and hours to a unit shock to εt .

The figure on page 37 highlights that the response of output to the
technology shock pretty much matches the response of technology itself.

Cogley-Nason argue that one needs instead to have “humped-shaped”
responses to shocks—a growth rate increase needs to be followed by another
growth rate increase—if a model is to match the facts about autocorrelated
output growth. The responses to technology shocks do not deliver this. Also,
while we don’t have other shocks in the model (e.g. government spending
shocks), Cogley-Nason show RBC models don’t generate hump-shaped
responses for these either.
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RBCs Do Not Generate Positively Autocorrelated Growth
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Impulse Response Functions to Technology Shock
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Impulse Response Functions to Technology Shock
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Extending the RBC Approach

In addition to the Cogley-Nason critique, RBC models have also been
criticised by Jordi Gali for failing to explain the labour market response to
technology shocks.

Gali has used VARs to show that hours worked tends to decline after a
positive technology shock in strong contrast to the model’s predictions.

There are currently a number of branches of research aimed at fixing the
deficiencies of the basic RBC approach.

Some of them involve putting extra bells and whistles on the basic
market-clearing RBC approach: Examples include variable utilization, lags in
investment projects, habit persistence in consumer utility. Adding these
elements tends to strengthen the propagation mechanism element of the
model.

The second approach is to depart more systematically from the basic RBC
approach by adding rigidities such as sticky prices and wages. Some papers do
this and add the other bells-and-whistles. We will introduce a “full blown”
DSGE model later in the course.
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