
Calculating The Bookmaker’s Margin:

Why Bets Lose More On Average Than You Are Warned

Tadgh Hegarty* Karl Whelan†

University College Dublin

December 2023

Abstract

Guides to sports betting tell bettors how to use quoted odds to calculate the expected loss rate on
bets due to the bookmaker’s margin. We show that if betting markets are efficient, in the sense
of each bet on a contest having the same expected return, then the recommended calculation
is correct. However, we also show that if bookmakers set higher profit margins for bets with
lower probabilities of winning (as implied by the evidence on favorite-longshot bias) then average
loss rates across all available bets will be higher than predicted by this widely-recommended
calculation. We provide evidence from betting on soccer and tennis to illustrate that average loss
rates on available bets are consistently higher than predicted by the conventional calculation.
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1. Introduction

Online sports betting has grown rapidly across the world in recent years. This trend is particularly

evident in the US after a 2018 Supreme Court decision declared the federal prohibition on betting

on sports to be unconstitutional. By 2023, 38 states had legalized sports betting in various forms.1

Betting in these markets is already large, with $277 billion placed in legal sports betting markets in

the time between the Supreme Court ruling and October 2023.2 The huge amount of money being

spent on advertising on sports betting in the US suggests the newly-legalized bookmaking firms

believe this market is going to grow substantially over the next few years.3

Unlike pari-mutuel racetrack betting, which pools all bets and pays the funds out (minus a frac-

tion to cover costs and profits) to those who picked the winner in proportion to the size of their bet,

the modern online betting industry offers fixed-odds bets. In other words, they make offers such as

“You get back $3 if your bet wins and lose your $1 bet otherwise” and this offer is not affected by the

actions of subsequent bettors. In this example, 3 is known as the “decimal odds” for this bet.

The rise in online sports betting has been accompanied by an explosion in books and websites

providing advice on fixed-odds betting. One of the key pieces of advice from these sources is that

bettors should use the odds to calculate the bookmaker’s expected gross profit margin on a contest,

i.e. the bookmaker’s profit earned on bets before accounting for costs such as salaries or taxes. This

margin goes by various names—in the US, it is often called the vigorish or “vig”, the hold or the

juice—and conventions on how to quote odds also vary across countries. So the descriptions can

differ in style but the substance of the advice is the same: Bettors should calculate the sum of the

inverses of the decimal odds, known as the “overround”. The inverse of the overround will then tell

them the expected payout on a $1 bet, which will be a number less than one.

In this paper, we show that the recommended overround-based formula for the expected payout

on bets is correct if the betting market is efficient in the sense that the bookmaker’s expected profit

margins are equal across bets on each outcome of a game. However, there is a large literature, dating

back to Griffith (1949), demonstrating that sports betting markets tend to exhibit favorite-longshot

bias: Losses from betting on longshots are larger than from betting on favorites. While this bias is

well known, we believe its implications for expected payout calculations are not. We show that if

bookmakers have higher profit margins for bets that are less likely to win, then the average loss rate

across all available bets will be higher than implied by the overround formula. We illustrate this

result using large datasets on the odds and outcomes from betting on soccer and tennis.

1See https://www.americangaming.org/research/state-gaming-map/
2Data from https://www.legalsportsreport.com/sports-betting/revenue/
3Forbes have reported that total advertising spending by US sportsbooks is projected to be about $2 bil-

lion in 2023. https://www.forbes.com/sites/bradadgate/2023/09/01/more-sportsbook-ads-are-running-in-non-sports-
programming/
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2. The Overround Formula with an Efficient Betting Market

Consider a sporting event withN possible outcomes. Bookmakers offer decimal oddsOi on outcome

i occurring, meaningOi is the total payout (inclusive of the original stake) from betting $1 on outcome

iwhen this outcome occurs. For “spread bets” on two-outcome sports, which have traditionally been

popular in the US, the gambler bets on a scoreline adjusted to add points to the underdog’s score and

equal odds are set for both bets. However, internationally, most sports betting involves betting on

the potential outcomes of the actual contest, with higher odds offered on the less likely outcomes.

This type of “moneyline” betting is now a major feature of the newly-legal US sportsbooks.

There is a wealth of online resources aimed at informing people about how fixed-odds betting

markets work, most of it containing advertising for betting websites. These resources place a key

emphasis on the need to calculate the bookmaker’s margin or “vig” when evaluating a bet. Dis-

cussions of these issues vary in their sophistication. The less sophisticated resouces tell bettors to

calculate the margin by subtracting one from the overround (the sum of the inverses of the decimal

odds)4

m =
N∑
i=1

1

Oi
− 1 (1)

So, for example, if the overround is 1.045, bettors can infer that the bookmaker’s margin is 4.5%. This

suggests that, for every dollar placed, the bookmaker stands to earn an average of 4.5%. The more

sophisticated resources instead tell bettors to calculate the bookmaker’s margin as5

m = 1 − 1∑N
i=1

1
Oi

(2)

In this case, if the overround is v = 1.045, the bookmaker’s margin is 1 − 1
1.045 = 0.043. As we show

below, under specific conditions, this second formula correctly predicts that the expected return for

a bookmaker on each dollar staked by bettors will be 4.3% with the same figure being the expected

loss rate for the bettor. Under these conditions, the expected payout on a one dollar bet is

π = 1 −m =
1∑N
i=1

1
Oi

(3)

We will term this “the overround formula” for the expected payout. For relatively small margins the

calculations from equations 1 and 2 will be very similar because for low values of x, the approxima-

tion x ≈ 1 − 1
1+x will work well.

To derive the conditions under which the calculated margin in equation 2 is correct, we will

assume that bookmakers know the true probabilities Pi that outcome i will occur and that the book-

4Here is an example https://www.legalsportsreport.com/sports-betting/vigorish/
5Here, for example, https://bookies.com/guides/what-is-the-vigorish
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making market corresponds to Thaler and Ziemba’s (1988) definition of strong-form efficiency which

implies that all bets on the same event should have the same expected rate of return.”6 This means

that bookmakers set decimal odds so that the expected payout on each bet is given by

PiOi = µ i = 1, ..., N (4)

where µ is the common expected payout across all bets on the event. The requirement that the

probabilities sum to one gives us the following

K∑
i=1

Pi =

K∑
i=1

µ

Oi
= 1 (5)

which can be re-expressed as

µ =
1∑K
i=1

1
Oi

= π (6)

In other words, the actual expected payout on all bets (µ) equals the overround-based calculation of

equation 3. The underlying probabilities can also then be estimated correctly as the “normalized”

probabilities defined as

Pk =
1∑K
i=1

1
Oi

1

Ok
(7)

3. Favorite-Longshot Bias

The accuracy of the overround formula for the expected payout relies on the assumption that betting

markets feature strong-form efficiency. However, there is a large literature documenting that book-

makers tend to make bigger profits from bets on longshots than bets on favorites. Many different

explanations have been offered but, from our perspective, the key point is just that such a pattern

exists.7 We provide our own examples of this pattern from data on soccer and tennis betting below.

We will assume now that odds are determined by the bookmaker according to

Oi =
µi
Pi

where
dµi
dPi

> 0 i = 1, ..., N (8)

so there are separate expected payout rates for each bet and the payout rates µi depend positively on

the Pi. In this case, bookmakers explicitly set odds to make higher profit margins on bets with lower

6Technically, Thaler and Ziemba (1988) defined a strong form of efficiency for a betting market as being the property that
“All bets should have expected values equal to (1–t) times the amount bet” where t was the track tack from pari-mutuel betting,
which was the focus of their research. However, the generalization to betting markets with odds set by bookmakers is
clear.

7Snowberg and Wolfers (2008) and Ottaviani and Sørensen (2008) are excellent surveys of the theoretical and empirical
literature on the favorite-longshot bias.
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probabilities of success.

What are the properties now of the standard overround-based calculation of the expected payout?

In this case, the calculation can be expressed in terms of the probabilities and expected payouts

(which are unobserved to bettors) as

π =
1∑N
i=1

Pi
µi

(9)

This is a complex function of the N separate payout rates, µi set by the bookmaker. It is the inverse

of a weighted sum of the inverses of the payout rates, where the probabilities of the outcomes are the

weights (technically it is a probability-weighted harmonic mean of the payout rates).

We want to compare π with the average payout rate across all bets, which can be calculated as a

simple average of the separate payout rates, µi. We might hope in the complex calculation of equation

9—in which the inverse of the expected payouts are weighted by probabilities and then the inverse

is taken—that the two inverse operations essentially cancel, so that π can be well approximated as

a simple linear function of the expected payouts. We show in an appendix that this is indeed the

case. When there is favorite-longshot bias, the overround formula for the expected payout can be

approximated by the probability weighted mean of the payout rates, which we will denote µ̄p

π ≈
N∑
i=1

Piµi = µ̄p (10)

and this approximation works well as long as Var(µi)
(µ̄p)2

is small. Using the variations in observed payout

rates ranging from favorites to longshots in our datasets below as proxies for the µi values, we have

found that this calculation produces a small number so the approximation works well in practice.

This approximation allows us to compare the expected payout implied by the overround formula

and the average expected payout rate across all available bets. Favorite-longshot bias means Pi and

µi are positively correlated, so we can conclude that

1

N

N∑
i=1

µi <

N∑
i=1

Piµi = µ̄p ≈ π (11)

because µ̄p places more weight on the higher values of µi than the simple average. This means the

average payout across all available bets is less than suggested by the overround formula.

An alternative hope may be that the overround formula’s expected payout rate represents the

average payout across all bets that have actually been placed, rather than the simple average across

all available bets. This average payout across bets placed is not generally observable because book-

makers do not publish data on betting volumes. However, it is unlikely that betting volumes are

strictly proportional to the underlying probabilities. In the baseline case where markets are efficient,
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the odds for each bet should be equally attractive, suggesting an equal split among bets as a rea-

sonable baseline outcome. While there do appear to be inefficiencies in fixed-odds betting markets,

the odds for each bet still have to be attractive enough to get people to bet on them and if they are

not, bookmakers will adjust them upwards. Indeed, recent evidence on moneyline bets on US sports

from Moscowitz and Vasudevan (2022) shows the number of bets placed as being relatively equal

across the different deciles by estimated win probability. This suggests the average payout rate for

bettors across bets placed will be closer to an equally weighted payout rate across all bets. It seems

likely, then, that the overround formula’s expected payout rate also overstates the average payout

obtained by bettors.

4. Evidence From Betting on Soccer and Tennis

To provide empirical examples of the discrepancy between expected loss rates implied by the over-

round formula and realized average loss rates across all available bets, we use two datasets both

made publicly available by gambling expert and author, Joseph Buchdahl. From www.football-

data.co.uk, we obtain betting odds for each possible outcome (home win, away win and draw) and

outcomes for 84,230 European professional soccer matches, spanning the 2011/12 to 2021/22 seasons

for 22 European soccer leagues across 11 different nations as described in Table 1. From www.tennis-

data.co.uk, we have odds and outcomes for 58,112 professional men’s and women’s matches played

across the world on the ATP and WTA tours. Our measure of betting odds is the average closing

odds across a wide range of online bookmakers surveyed by Buchdahl. While his sites also report

the maximum odds available from bookmakers on each match, these odds tend to only be available

as promotional bets with limited stakes allowed and they do not represent the typical market odds

available for most bets on an event.

Figure 1 displays two bar charts that divide all bets in our samples into deciles by their predicted

probability of success according to the normalized probability method described in equation 7.8 For

each decile, it displays the average payout on these bets per dollar staked. This figure is useful for two

purposes. First, despite these betting markets having high volumes and many different competing

providers, the odds clearly display an important inefficiency with a clear pattern of favorite-longshot

bias evident. For soccer, bets in the lowest decile for estimated probability of success have an average

payout on a $1 bet of only $0.83 (meaning an average loss of 17%) while bets in highest decile have

only a 2% average loss rate. For tennis, the pattern is even more extreme, with bets in the bottom

decile losing 23% on average while bets in the top decile lose only 3%. This evidence confirms the

existing findings using smaller datasets of Angelini and de Angelis (2019) for soccer and Forrest and

8In Appendix B, we show that the presence of favorite-longshot bias means normalized probability estimates are biased:
when the true probabilities are low, normalized probabilities over-estimate them with the opposite applying when the true
probabilities are high. However, there is still a monotonic relationship between the estimated probabilities and the true
probabilities, so the pattern reported in the bar chart would not be affected by this bias.
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McHale (2007) for tennis.

Second, we can use the data to estimate the size of the approximation error for equation 10. In the

appendix, we show that this depends on the size of Var(µi)
(µ̄p)2

. We can use the variance in payout rates

across the deciles illustrated in Figure 1 to estimate a typical value for Var (µi) and use the expected

payout from the overround formula to estimate a typical value for µ̄p. For the soccer data, the average

expected payout from the overround formula is 0.935 and the standard deviation in estimated payout

rates across bets illustrated in Figure 1 is 0.039. So we can estimate the variance-related term as

Var (µi)

(µ̄p)2 =

(
0.039

0.935

)2

= 0.0017 (12)

From equation A.18 in the appendix, this means the expected payout rate implied by the overround

formula will be less than 0.2% below the probability weighted sum of the probability-specific payout

rates.9 The variance in payout rates implied by the tennis data is larger but still implies the overround

formula will be less than 0.35% below the probability weighted sum of the various markups.

These small approximation errors mean average payout rates estimated by the overround for-

mula will be well approximated by a weighted average of expected payout rates, where the weights

are the probabilities Pi of the bets being successful. As explained above, this means average payout

rates across all bets will tend to be lower than predicted by the overround formula. Table 2 (for soc-

cer) and Table 3 (for tennis) confirm this prediction. For soccer, the average loss rate predicted by

the overround formula is 6.5% while the actual average loss rate across all bets is 7.8%, so losses are

twenty percent higher than predicted. For tennis, the average loss rate predicted by the overround

formula is 5.4% while the actual average loss rate across all bets is 7.5%, so losses are almost forty

percent higher than predicted. In both cases, t-tests strongly reject the hypotheses that the means of

the actual loss distributions are equal to the means obtained from the overround equation.

The tables also show this pattern has been relatively stable over time. Both average realized loss

rates and the loss rates predicted by the overround formula have fallen over the past decade, perhaps

reflecting greater competition in the sports betting market. However, for each year, realized average

loss rates across all bets have been larger than predicted by the overround formula.

Figure 2 further illustrates this finding by sorting all matches in the two samples into 20 quantiles

according to their predicted average loss rate from the overround formula and displaying their actual

average loss rates across all bets. Across the full range of quantiles (apart from the bottom one

for the soccer data) the actual average loss rates are larger than the expected loss rates implied by

the overround formula. The larger deviations of outcomes from those predicted by the overround

formula for tennis in the bottom deciles are consistent with its pattern of favorite-longshot bias being

stronger.

9This calculation is 0.0018 if we used the actual average ex post payout rate of 0.922.
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Table 1: The 22 soccer leagues in the dataset

Nation Number of Divisions Division(s)

England 5 Premier League, Championship, League 1 & 2, Conference

Scotland 4 Premier League, Championship, League 1 & 2

Germany 2 Bundesliga 1 & 2

Spain 2 La Liga 1 & 2

Italy 2 Serie A & B

France 2 Ligue 1 & 2

Belgium 1 First Division A

Greece 1 Super League Greece 1

Netherlands 1 Eredivisie

Portugal 1 Primeira Liga

Turkey 1 Super Lig
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Figure 1: Average payout rates for bets by deciles of estimated values of the probability the bet will
win

(a) Soccer

(b) Tennis
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Table 2: Average loss rates across all available soccer bets compared with loss rates implied by
overround formula

(N = number of matches)

Season Loss Rates Implied by Overround Formula Realized Average Loss Rates N

All Seasons 6.5% 7.8% 84,230

2011 / 2012 7.5% 9.2% 7,694

2012 / 2013 7.0% 7.7% 7,705

2013 / 2014 6.9% 8.6% 7,616

2014 / 2015 6.6% 8.1% 7,841

2015 / 2016 6.6% 7.7% 7,801

2016 / 2017 6.6% 8.1% 7,841

2017 / 2018 6.4% 8.5% 7,794

2018 / 2019 6.0% 7.4% 7,661

2019 / 2020 5.9% 6.1% 6,893

2020 / 2021 5.8% 7.0% 7,644

2021 / 2022 5.6% 7.5% 7,740
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Table 3: Average loss rates across all available tennis bets compared with loss rates implied by
overround formula

(N = number of matches)

Year Loss Rates Implied by Overround Formula Realized Average Loss Rates N

All Years 5.4% 7.4% 58,112

2011 6.0% 9.5% 5,124

2012 5.8% 8.4% 5,011

2013 5.7% 8.5% 5,066

2014 5.6% 7.5% 5,071

2015 5.7% 8.3% 5,145

2016 5.5% 6.8% 5,141

2017 5.3% 5.8% 5,127

2018 4.9% 6.8% 5,104

2019 5.0% 6.9% 5,080

2020 5.0% 7.1% 2,321

2021 5.1% 7.7% 4,929

2022 5.2% 5.5% 4,993
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Figure 2: Average loss rates across all available bets compared with loss rates implied by overround
formula: Sorted by overround formula loss rate into 20 quantiles

(a) Soccer

(b) Tennis
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5. Conclusions

Betting on sports is growing rapidly around the world, most notably in the United States. Many

guides exist to help those new to sports betting to understand how it works. A key element of their

guidance is that bettors should use the overround formula to calculate the bookmaker’s profit margin

and thus the amount that bettors should expect to lose.

We have shown that when bookmakers set higher profit margins for bets with a lower likelihood

of winning—as is the case in many betting markets such as the ones for soccer and tennis reported

here—the overround formula understates the average loss rates across all available bets. In our

examples, actual average loss rates across all available bets are one-fifth higher than predicted for

betting on soccer and forty percent higher for betting on tennis. We recommend that advice for those

interested in gambling on sports should be updated to inform people that they will likely lose more

on average on the bets offered by bookmakers than is indicated by the calculation that is currently

widely recommended.
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A Approximation Result
We obtain the approximation described in equation 10 with an approach used to derive Jensen’s

inequality. Using Taylor series, we can write provide a second-order approximation of any func-

tion of the individual payouts, µi as

F (µi) ≈ F (µ̄p) + F ′ (µ̄p) (µi − µ̄p) +
F ′′ (µ̄p) (µi − µ̄p)2

2
(A.13)

The inverse of the overround-based estimated of the expected payout π is given by

1

π
=

N∑
i=1

Pi
µi

(A.14)

Applying the Taylor series approximation in equation A.13 to F (x) = 1
x around the point µ̄p,

we get
1

π
≈ 1

µ̄p
− µi − µ̄p

(µ̄p)2 +
(µi − µ̄p)2

(µ̄p)3 (A.15)

Taking expectations using the Pi terms as probabilities, the middle term on the right equals zero

and we get

1

π
≈ 1

µ̄p
+

N∑
i=1

Pi (µi − µ̄p)2

(µ̄p)3 (A.16)

The inequality 1
µ̂ <

1
µ̄p that this implies is an application of Jensen’s inequality for convex func-

tions because F (x) = 1
x is convex for positive x. This can be re-written as

1

π
≈ 1

µ̄p
+

Var (µi)

(µ̄p)3 (A.17)

where Var (µi) is the variance of payout rates. Re-writing this as

π ≈ µ̄p

1 + Var(µi)
(µ̄p)2

(A.18)

we can see that the overround-based estimated payout rate µ̂ will be smaller than µ̄p. But if

term Var(µi)
(µ̄p)2

—the variance in the bookmaker’s profit margins across bets divided by the square

of the probability weighted average of the payouts—is sufficiently small, then we can write this

approximation as

π ≈ µ̄p (A.19)
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B Bias in Normalized Probabilities
Here we show that when the bookmaker sets odds to have a favorite-longshot bias, the tradi-

tional normalized probabilities are biased estimates of the true probabilities. When there is a

favorite-longshot bias, normalized probabilities can be expressed as

P̂i =
π

Oi
=

π
µi
Pi

=
π

µi
Pi =

 1

µi
∑N

j=1
Pj

µj

Pi (B.20)

The term in the denominator of the fraction multiplying Pi can be written as

µi

N∑
j=1

Pj
µj

= Pi +

N∑
j=1
j 6=i

Pj
µi
µj

(B.21)

We can now examine the implications of favorite-longshot bias for this calculation. It calculates

a weighted average of 1 and a set of terms of the form µi
µj

. Suppose outcome i has the lowest

probability and thus the lowest value of µi. Then the terms in the µi
µj

will all be less than one

and the overall sum in equation B.21 will be less than one. This will imply P̂i > Pi. The same

logic says that P̂i < Pi for the outcome with the highest probability and that the size and sign

of the bias in probability estimates will depend monotonically on the size of the underlying

probability.


