
Estimating Loss Rates in Betting Markets:

Theory and Evidence

Tadgh Hegarty* Karl Whelan†

March 2024

Abstract

If betting markets are efficient, in the sense of each bet on a contest having the same expected
return, then there is a simple way to use the quoted odds calculate the expected loss rate on bets
due to the bookmaker’s margin. Guides to sports betting tell bettors to do this calculation to figure
out the bookmaker’s margin. We show that if bookmakers set higher profit margins for bets with
lower probabilities of winning (as implied by the evidence on favorite-longshot bias) then average
loss rates across all available bets will be higher than predicted by this widely-recommended
calculation. We provide evidence from betting on soccer and tennis to illustrate that average loss
rates on available bets are consistently higher than predicted by the conventional calculation and
that the magnitude of this difference is large.

Keywords: Sports Betting, Normalized Probabilities, Favorite-Longshot Bias

*tadgh.hegarty@ucdconnect.ie.
†karl.whelan@ucd.ie.



2

1. Introduction

Online sports betting with bookmakers has grown rapidly across the world in recent years, facilitated

by mobile internet technologies that allow people to place bets with the touch of a button. Accom-

panying this has been an explosion in books and websites providing advice on betting. Probably the

most common advice from these sources is that bettors should use the odds to estimate the book-

maker’s expected gross profit margin on a contest, i.e. the bookmaker’s profit earned on bets before

accounting for costs such as salaries or taxes. The higher this margin is, the less likely it is that bettors

can earn a profit.

The bookmaker’s margin goes by various names—in the US, it is often called the vigorish or

“vig”, the hold or the juice—and conventions on how to quote odds also vary across countries. So

the descriptions can differ in style but the substance of the advice is the same. If bookmakers do

not earn any gross profits then decimal odds (the payouts on successful $1 bets) will be inversely

proportional to the underlying probabilities and the sum of the inverses of the decimal odds will

equal one. Given this, bettors are advised to calculate the sum of the inverses of these decimal odds,

which is known in the bookmaking business as the “overround”. The extent to which the overround

is greater than one is determined by the bookmakers margin. More specifically, the inverse of the

overround provides an estimate of the expected payout on a $1 bet. This expected payout can then

also be used to figure out the so-called “normalized probabilities” of each bet’s success implied by

the odds.

In this paper, we show that the recommended overround-based formula for the expected payout

on bets is correct if the betting market is efficient in the sense that the bookmaker’s expected profit

margins are equal across bets on each outcome of a game, a condition that Thaler and Ziemba (1988)

termed “strong market efficiency.” However, there is a large literature, dating back to Griffith (1949),

demonstrating that sports betting markets tend to exhibit favorite-longshot bias: Losses from betting

on longshots are larger than from betting on favorites. This bias is well known and it has been

documented several times that the normalized probabilities implied by the assumption of market

efficiency are too low for favorite bets and too high for longshots.1

In contrast, we believe the implications of favorite-longshot bias for expected payout calculations

are not known. Normalized probabilities are, by construction, correct on average because they sum to

one. However, we show that if bookmakers have higher profit margins for bets that are less likely to

win, then the average loss rate across all available bets will be higher than implied by the overround

formula. We illustrate this result using large datasets on odds and outcomes from betting on soccer

and tennis. We show that the magnitude of this bias is large. Across all bets in our soccer data set,

average loss rates for betting on soccer are one-fifth higher than implied by the overround formula

and forty percent higher for betting on tennis.

1See, for example, Berkowitz, Depken and Gandar (2018) and Hegarty and Whelan (2023a).
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2. The Overround Formula with an Efficient Betting Market

Unlike pari-mutuel racetrack betting, which pools all bets and pays the funds out (minus a fraction

to cover costs and profits) to those who picked the winner in proportion to the size of their bet, the

modern online betting industry offers fixed-odds bets. In other words, they make offers such as

“You get back $3 if your bet wins and lose your $1 bet otherwise” and this offer is not affected by the

actions of subsequent bettors. In this example, 3 is the decimal odds.

There are many online resources aimed at informing people about how fixed-odds betting mar-

kets work, most of them containing advertising for betting websites. These online resources place

a key emphasis on the need to calculate the bookmaker’s margin or “vig” when evaluating a bet.

Discussions of this issue vary in their sophistication. To illustrate, consider a sporting event with

N possible outcomes. Bookmakers offer decimal odds Oi on outcome i occurring, meaning Oi is

the decimal odds from betting $1 on outcome i when this outcome occurs. The less sophisticated

resources tell bettors to calculate the margin by subtracting one from the overround (the sum of the

inverses of the decimal odds)2

m =
N∑
i=1

1

Oi
− 1 (1)

So, for example, if the overround is 1.045, bettors can infer that the bookmaker’s margin is 4.5%. This

suggests that, for every dollar placed, the bookmaker stands to earn an average of 4.5 cents. The

more sophisticated resources instead tell bettors to calculate the bookmaker’s margin as3

m = 1− 1∑N
i=1

1
Oi

(2)

In this case, if the overround is v = 1.045, the bookmaker’s margin is 1− 1
1.045 = 0.043. As we show

below, under specific conditions, this second formula correctly predicts that the expected return for

a bookmaker on each dollar staked by bettors will be 4.3% with the same figure being the expected

loss rate for the bettor. Under these conditions, the expected payout on a one dollar bet is

π = 1−m =
1∑N

i=1
1
Oi

(3)

We will term this “the overround formula” for the expected payout. For relatively small margins the

calculations from equations 1 and 2 will be very similar because for low values of x, the approxima-

tion x ≈ 1− 1
1+x will work well.

To derive the conditions under which the calculated margin in equation 2 is correct, we will

assume that bookmakers know the true probabilities Pi that outcome i will occur and that the book-

2Here is an example https://www.legalsportsreport.com/sports-betting/vigorish/
3Here, for example, https://bookies.com/guides/what-is-the-vigorish
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making market corresponds to Thaler and Ziemba’s (1988) definition of strong-form efficiency which

implies that all bets on the same event should have the same expected rate of return.4 This means

that bookmakers set decimal odds so that the expected payout on each bet is given by

PiOi = µ i = 1, ..., N (4)

where µ is the common expected payout across all bets on the event. The requirement that the

probabilities sum to one gives us the following

K∑
i=1

Pi =

K∑
i=1

µ

Oi
= 1 (5)

which can be re-expressed as

µ =
1∑K

i=1
1
Oi

= π (6)

In other words, the actual expected payout on all bets (µ) equals the overround-based calculation of

equation 3. The underlying probabilities can also then be estimated correctly as the “normalized”

probabilities defined as

Pk =
π

Ok
(7)

3. Implications of Favorite-Longshot Bias

Here, we describe how favorite-longshot bias impacts the accuracy of normalized probabilities (the

inaccuracy of which has previously been documented) and how it impacts the overround-based

estimate of the expected payout (which has not been previously shown).

3.1. Normalized Probabilities

The accuracy of the overround formula for the expected payout relies on the assumption that betting

markets feature strong-form efficiency. However, there is a large literature documenting that book-

makers tend to make bigger profits from bets on longshots than bets on favorites. Many different

explanations have been offered but, from our perspective, the key point is just that such a pattern

exists.5 We provide our own examples of this pattern from data on soccer and tennis betting below.

To illustrate the implications of this pattern, assume now that odds are determined by the book-

4Technically, Thaler and Ziemba (1988) defined a strong form of efficiency for a betting market as being the property that
“All bets should have expected values equal to (1–t) times the amount bet” where t was the track tack from pari-mutuel betting,
which was the focus of their research. However, the generalization to betting markets with odds set by bookmakers is
clear.

5Snowberg and Wolfers (2008) and Ottaviani and Sørensen (2008) are excellent surveys of the theoretical and empirical
literature on the favorite-longshot bias.
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maker according to

Oi =
µi

Pi
where

dµi

dPi
> 0 i = 1, ..., N (8)

so there are separate expected payout rates for each bet and the payout rates µi depend positively on

the Pi. In this case, bookmakers explicitly set odds to make higher profit margins on bets with lower

probabilities of success.

Now consider first the estimated probabilities based on the assumption of market efficiency.

These are calculated by using the overround to estimate the expected payout rate, which we will

now denote as µ̂. With favorite-longshot bias, the overround-based estimate of the expected pay-

off can be expressed in terms of the probabilities and expected payouts (which are unobserved to

bettors) as

π =
1∑N

i=1
Pi
µi

(9)

The normalized probabilities can be re-expressed as follows:

P̂i =
π

Oi
=

π
µi

Pi

=
π

µi
Pi =

 1

µi
∑N

j=1
Pj

µj

Pi (10)

The term in the denominator of the fraction multiplying Pi can be written as

µi

N∑
j=1

Pj

µj
= Pi +

N∑
j=1
j ̸=i

Pj
µi

µj
(11)

Now consider the implications of favorite-longshot bias for this calculation. It calculates a probability

weighted average of 1 and a set of terms of the form µi

µj
. Suppose outcome i has the lowest probability

and thus the lowest value of µi. Then the terms in the µi

µj
will all be less than one and the overall sum

in equation 11 will be less than one. This will imply P̂i > Pi. The same logic says that P̂i < Pi

for the outcome with the highest probability and that the size and sign of the bias in probability

estimates will depend monotonically on the size of the underlying probability. While the normalized

probabilities are biased in one direction for low true probabilities and in the other direction for high

true probabilities, the fact that they sum to one means that they will at least on average be correct.

We will note that while Strumbelj (2014), Berkowitz, Depken and Gandar (2018) and Hegarty

and Whelan (2023a) have all presented empirical evidence of biases in normalized probabilities in

various fixed-odds betting markets, this formal proof that these biases are caused by there being

higher margins for lower probability bets, is to our knowledge new.
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3.2. Expected Payouts

What are the properties now of the standard overround-based calculation of the expected payout?

Normalized probabilities, while biased, will on average be correct but this is not the case for expected

payouts. Equation 9 is a complex function of the N separate payout rates, µi set by the bookmaker.

It is the inverse of a weighted sum of the inverses of the payout rates, where the probabilities of

the outcomes are the weights (technically it is a probability-weighted harmonic mean of the payout

rates).

We want to compare π with the average payout rate across all bets, which can be calculated as

a simple average of the separate payout rates, µi. We might hope in the complexity of equation

9—in which the inverse of the expected payouts are weighted by probabilities and then the inverse

is taken—that the two inverse operations essentially cancel, so that π can be well approximated as

a simple linear function of the expected payouts. We show in an appendix that this is indeed the

case. When there is favorite-longshot bias, the overround formula for the expected payout can be

approximated by the probability weighted mean of the payout rates, which we will denote µ̄p

π ≈
N∑
i=1

Piµi = µ̄p (12)

and this approximation works well as long as

ϵ =

N∑
i=1

Pi

(
µi − µ̄p

µ̄p

)2

(13)

is small. We will show how, using the variations in observed payout rates ranging from favorites

to longshots in our data as proxies for the µi values and the resulting normalized probabilities as

proxies for the Pi values, we have estimated that the average value for ϵ appears to be very small, so

the approximation works well in practice.

This approximation allows us to compare the expected payout implied by the overround formula

and the average expected payout rate across all available bets. Favorite-longshot bias means Pi and

µi are positively correlated, so we can conclude that

1

N

N∑
i=1

µi <

N∑
i=1

Piµi = µ̄p ≈ π (14)

because µ̄p places more weight on the higher values of µi than the simple average. This means the

average payout across all available bets is less than suggested by the overround formula.

An alternative possibility could be that the overround formula’s expected payout rate represents

the average payout across all bets that have actually been placed, rather than the simple average
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across all available bets. This average payout across bets placed is not generally observable because

bookmakers do not publish data on betting volumes. However, it is unlikely that betting volumes

are strictly proportional to the underlying probabilities. While people often think that the highest

volume of bets must be placed on favorites, this doesn’t necessarily confirm with either theory or

practice. In the baseline case where markets are efficient, the odds for each bet should be equally

attractive, suggesting an equal split among bets as a reasonable baseline outcome. And the few

studies that we do have on volumes in fixed-odds betting markets, such as Strumpf (2003), Levitt

(2004) and Flepp, Nüesch and Franck (2016) have shown that odds are set in a more complex way

than just to align the fraction of bets placed with the underlying probabilities. It seems likely, then,

that the overround formula’s expected payout rate also overstates the average payout obtained by

bettors.

4. Evidence From Betting on Soccer and Tennis

Here we describe two datasets with odds and outcomes from sporting events. We first show both

datasets exhibit a favorite-longshot bias and then confirm the predictions just derived for estimated

normalized probabilities and the estimated payout rates.

4.1. Data and Favorite-Longshot Bias

We use two datasets made available by gambling expert Joseph Buchdahl. From www.football-

data.co.uk, we obtain outcomes and average closing odds on home wins, away wins and draws

across a wide range of bookmakers for 84,230 European professional soccer matches, spanning the

2011/12 to 2021/22 seasons for 22 European soccer leagues (listed in the appendix). From www.tennis-

data.co.uk, we have outcomes and average closing odds for 55,988 professional men’s and women’s

tennis matches on the ATP and WTA tours between 2011 and 2022.

These datasets also report the maximum available odds on contests, which have been used by

some researchers to assess whether there are profitable betting opportunities. We use average rather

than maximum odds for two reasons. First, our main focus is on testing the strong-form efficiency

assumption of equal returns across different bets in the same contest and, for this purpose, average

rather than maximum odds are going to be more reflective of the returns that bettors are getting

from their stakes. Second, it is not clear that maximum odds data are actually useful for assessing

real-world betting strategies. Maximum odds will often tend to be “loss leaders” posted with the

intention of attracting new customers. They usually come with restrictions on how much money can

be placed. In addition, those who choose to regularly place bets at the best available odds will run

the risk of being cut off by retail bookmakers.6

6Bookmakers’ practices of customer profiling and stake restrictions are documented by Davies (2022a, 2022b).
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We divided all possible bets (252,690 on soccer and 111,976 on tennis) into deciles according to

their decimal odds. The charts in Figure 1 show average payouts for a unit bet for each decile of odds.

The data clearly suggest that these betting markets do not satisfy strong-form efficiency. Average

payouts decline as the odds rise, dropping off particularly for the upper deciles of odds.

This pattern of low average payouts for longshot bets is somewhat larger for tennis than for

soccer. For soccer, bets in the highest odds decile have an average payout on a $1 bet of only $0.83

(meaning an average loss of 17%) while bets in the lowest odds decile have only a 3% average loss

rate. For tennis, the pattern is even more extreme, with bets in the bottom decile losing 26% on

average while bets in the top decile lose only 3%. Standard t tests for differences of means across

these deciles strongly reject the hypotheses of the mean payouts for the lower deciles of odds being

the same as for the higher deciles. This evidence confirms the existing findings using smaller datasets

of Angelini and de Angelis (2019) for soccer and Forrest and McHale (2007) for tennis.

4.2. Normalized Probabilities

Figure 2 confirms the result derived above that the presence of favorite-longshot bias means normal-

ized probabilities are too high when the true probability is low and too low when the true probability

is too high. The upper panel divides all bets in the soccer dataset into 20 quantiles organized by nor-

malized probabilities and calculates the actual fraction of winning bets for each quantile.

There charts show a systematic pattern in which the estimated probabilities of bet success implied

by market efficiency are too high for low estimated values and too low for high estimated values. The

lower panel shows that normalized probabilities for tennis follow the same pattern. The deviations

of these probability estimates from the 45 degree line may seem small but they are statistically sig-

nificant for both high and low estimated probabilities. Also, for low values, the deviations are a big

percentage of the estimated probabilities, consistent with the large average loss estimates above. Ul-

timately, the favorite-longshot bias in payouts occurs because longshot bets don’t win as often as the

odds suggest they should.
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Figure 1: Average payout rates for bets by deciles of the decimal odds (1 = lowest odds, 10 = highest
odds)

(a) Soccer

(b) Tennis
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Figure 2: Actual Fraction of Wins Sorted by Normalized Probabilities

(a) Soccer

(b) Tennis
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4.3. Expected Payouts

We start with a method for checking whether the approximation we derived for the expected payout

in equation 12 is accurate. In the appendix, we show the accuracy of this approximation depends on

ϵ as defined in equation 13. This approximation error, which will vary for each match, depends on

the probabilities Pi of each outcome in a match as well as the expected payout µi for each bet. We do

not observe either of these but we do observe a consistent pattern of average payouts declining as

the odds increase, as documented in Figure 1. Given this, we estimate the size of the approximation

error by assigning an expected payout for each bet based on which decile its odds are in. With an

assumed expected payout for the bets, we can directly derive the probability that the bet will win

from the observable odds because by assumption Pi = µi

Oi
. Based on this, we can construct µ̄p as

defined in equation 12 and then use this to construct an ϵ as defined in equation 13 for each match.

For the soccer data, the average value of ϵ is 0.0012. From equation B.5 in the appendix, this means

the expected payout rate implied by the overround formula will be about 0.1% below the probability

weighted sum of the probability-specific payout rates. The variance in payout rates implied by the

tennis data was 0.0016, again implying the approximation error is very small.

These small approximation errors mean average payout rates estimated by the overround for-

mula will be very well approximated by a weighted average of expected payout rates, where the

weights are the probabilities Pi of the bets being successful. This means average payout rates across

all bets will tend to be lower than predicted by the overround formula. Table 1 (for soccer) and Table

2 (for tennis) confirm this prediction. For soccer, the average loss rate predicted by the overround

formula is 6.5% while the actual average loss rate across all bets is 7.8%, so losses are twenty percent

higher than predicted. For tennis, the average loss rate predicted by the overround formula is 5.4%

while the actual average loss rate across all bets is 7.4%, so losses are almost forty percent higher

than predicted. In both cases, t-tests strongly reject the hypotheses that the means of the actual loss

distributions are equal to the means obtained from the overround equation.

The tables also show this pattern has been relatively stable over time. Both average realized loss

rates and the loss rates predicted by the overround formula have fallen over the past decade, perhaps

reflecting greater competition in the sports betting market. However, for each year, realized average

loss rates across all bets have been larger than predicted by the overround formula.

Figure 3 further illustrates this finding by sorting all matches in the two samples into 20 quantiles

according to their predicted average loss rate from the overround formula and displaying their actual

average loss rates across all bets. Across the full range of quantiles (apart from the bottom soccer

quantile) the actual average loss rates are larger than the expected loss rates implied by the overround

formula. The larger deviations of outcomes from those predicted by the overround formula for tennis

in the bottom deciles are consistent with its pattern of favorite-longshot bias being stronger.
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Table 1: Average loss rates across all available soccer bets compared with loss rates implied by
overround formula

(N = number of matches)

Season Loss Rates Implied by Overround Formula Realized Average Loss Rates N

All Seasons 6.5% 7.8% 84,230

2011 / 2012 7.5% 9.2% 7,694

2012 / 2013 7.0% 7.7% 7,705

2013 / 2014 6.9% 8.6% 7,616

2014 / 2015 6.6% 8.1% 7,841

2015 / 2016 6.6% 7.7% 7,801

2016 / 2017 6.6% 8.1% 7,841

2017 / 2018 6.4% 8.5% 7,794

2018 / 2019 6.0% 7.4% 7,661

2019 / 2020 5.9% 6.1% 6,893

2020 / 2021 5.8% 7.0% 7,644

2021 / 2022 5.6% 7.5% 7,740
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Table 2: Average loss rates across all available tennis bets compared with loss rates implied by
overround formula

(N = number of matches)

Year Loss Rates Implied by Overround Formula Realized Average Loss Rates N

All Years 5.4% 7.4% 58,112

2011 6.0% 9.5% 5,124

2012 5.8% 8.4% 5,011

2013 5.7% 8.5% 5,066

2014 5.6% 7.5% 5,071

2015 5.7% 8.3% 5,145

2016 5.5% 6.8% 5,141

2017 5.3% 5.8% 5,127

2018 4.9% 6.8% 5,104

2019 5.0% 6.9% 5,080

2020 5.0% 7.1% 2,321

2021 5.1% 7.7% 4,929

2022 5.2% 5.5% 4,993
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Figure 3: Average loss rates across all available bets compared with loss rates implied by overround
formula: Sorted by overround formula loss rate into 20 quantiles

(a) Soccer

(b) Tennis
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4.4. On Shin Probabilities

Strumbelj (2014) and others have noted that normalized probabilities appear to be biased for many

fixed-odds betting markets. Strumbelj documented that an alternative set of estimated probabilities,

based on a Shin’s (1993) model, do better in predicting actual win rates. The reason for this is that

Shin’s model incorporates a fraction of bettors who are insiders who know what the outcome of the

event is going to be and this feature imparts a favorite-longshot bias on the odds. Cain, Law and Peel

(2001) showed how to use Shin’s model to take odds for an individual game and simultaneously esti-

mate the fraction of insiders and the win probabilities of the contestants. These probability estimates

“unwind” the favorite-longshot pattern in the odds when mapping them into probabilities.

Cain, Law and Peel’s method shows one way to recover probabilities that have a better predic-

tive performance than normalized probabilities. However, Shin’s model is not useful in recovering

better estimates of the average expected payouts on bets because it assumes that competition among

bookmakers results in gross profit margins of zero, which is clearly counter-factual. It may be pos-

sible, however, to apply a theoretical model that predicts a pattern of favorite-longshot bias in the

odds and predicts non-zero gross profit margins and such a model can be used to improve estimated

payout rates. The monopoly bookmaker model presented by Hegarty and Whelan (2023b), where

disagreement among bettors results in a favorite-longshot bias and average margins depend on the

elasticity of demand, may be a promising approach.

5. Conclusions

Betting on sports is growing rapidly around world. Many guides exist to help those new to sports

betting to understand how it works. A key element of their guidance is that bettors should use

the overround formula to calculate the bookmaker’s profit margin and thus the amount that bettors

should expect to lose.

We have shown that when bookmakers set higher profit margins for bets with a lower likelihood

of winning—as is the case in many betting markets such as the ones for soccer and tennis reported

here—the overround formula understates the average loss rates across all available bets. In our

examples, actual average loss rates across all available bets are one-fifth higher than predicted for

betting on soccer and forty percent higher for betting on tennis. We recommend that advice for those

interested in gambling on sports should be updated to inform people that they will likely lose more

on average on the bets offered by bookmakers than is indicated by the calculation that is currently

widely recommended.
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A Soccer Leagues in the Dataset

Table 3: The 22 soccer leagues in the dataset

Nation Number of Divisions Division(s)

England 5 Premier League, Championship, League 1 & 2, Conference

Scotland 4 Premier League, Championship, League 1 & 2

Germany 2 Bundesliga 1 & 2

Spain 2 La Liga 1 & 2

Italy 2 Serie A & B

France 2 Ligue 1 & 2

Belgium 1 First Division A

Greece 1 Super League Greece 1

Netherlands 1 Eredivisie

Portugal 1 Primeira Liga

Turkey 1 Super Lig
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B Approximation Result
We obtain the approximation described in equation 12 with an approach used to derive Jensen’s

inequality. Using Taylor series, we can write provide a second-order approximation of any func-

tion of the individual payouts, µi as

F (µi) ≈ F (µ̄p) + F ′ (µ̄p) (µi − µ̄p) +
F ′′ (µ̄p) (µi − µ̄p)2

2
(B.1)

The inverse of the overround-based estimated of the expected payout π is given by

1

π
=

N∑
i=1

Pi

µi
(B.2)

Applying the Taylor series approximation in equation B.1 to F (x) = 1
x around the point µ̄p, we

get
1

π
≈ 1

µ̄p
− µi − µ̄p

(µ̄p)2
+

(µi − µ̄p)2

(µ̄p)3
(B.3)

Taking expectations using the Pi terms as probabilities and using the definition of µ̄p in equation

12 , the middle term on the right equals zero and we get

1

π
≈ 1

µ̄p
+

N∑
i=1

Pi (µi − µ̄p)2

(µ̄p)3
(B.4)

The inequality 1
µ̂ < 1

µ̄p that this implies is an application of Jensen’s inequality for convex func-

tions because F (x) = 1
x is convex for positive x. This can be re-written as

π ≈ µ̄p

1 + ϵ
(B.5)

where

ϵ =
N∑
i=1

Pi

(
µi − µ̄p

µ̄p

)2

(B.6)

If ϵ is sufficiently small, then we can write this approximation as

π ≈ µ̄p (B.7)


