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Part I

Introduction
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Macroeconomic Dynamics

Parts of macroeconomics relate to purely static relationships, e.g. national
income accounting identities such as Y = C + I + G + X −M. But most of
modern macroeconomics is focused on dynamics: How do macroeconomic
variables change over time and how do the variables interact with each other?

In some cases, macroeconomists design models intended to match data and
be used for policy analysis. In other cases, they design “stylised” models
designed to shed light on certain specific phenomenon or inter-relationships.

Macroeconomic models also differ in other ways:

I Are they deterministic or stochastic?
I Do they use discrete time or continuous time?
I Do they use Lagrangian-based optimisation methods or more

sophisticated techniques like dynamic programming and optimal control?
I Do they have a “‘representative agent” or do they explicitly model and

aggregate heterogenous agents?

We will use “type of model” as our organising framework for presenting the
material.
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An Applied Focus: Learning Macroeconomics via Matlab

The point of this course is not to teach you a bunch of theories.

The goal is to teach macroeconomics in an applied way. You will learn how to
get models solved and running on a computer and how to adjust them and
get them to answer questions.

To do this we will use Matlab. Here are some reasons we will use Matlab
rather than R or Python.

1 It has higher functionality, built-in-help and better documentation and is
available for free download for all UCD staff and students.

2 It is the most commonly used software for modelling theoretical
macroeconomics. Once you know how to use Matlab, you will have
access to lots of online code relevant to macroeconomics, including
replication code for many papers.

3 In particular, Matlab allows you to use the Dynare package for solving
and simulating macro models and also the Macro Model Database which
has code for a huge number of models.

4 Matlab code can also be used with the free software package GNU
Octave.
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A Quick Taxonomy of Dynamic Model Types

We will start by exploring different types of variables that feature in different
macroeconomic models. See the taxonomy below for four different types of
model.

We will start in the top-left quadrant: Discrete-time deterministic models. We
will not cover the bottom right quadrant but I can direct you to resources on
this if you would like.
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Part II

Single Variable Difference Equations
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The Simplest Difference Equation

Difference equations describe discrete-time dynamics.

Consider the simplest possible linear difference equation

xt = λxt−1

We assume this equation has always held, so that means

xt = λxt−1 = λ2xt−2 = .... = λtx0

What kind of dynamics will this equation imply? It depends on the value of λ

I λ > 1: Explosive dynamics in which the series heads steadily for plus or
minus infinity, depending on whether x0 is positive or negative.

I λ = 1: Series remains unchanged.
I 0 < λ < 1: Smooth dynamics in which the series heads steadily towards

zero from its starting point.
I λ = 0: Series set equal to zero after period zero and stays there.
I −1 < λ < 0: Damped oscillations, settling down at zero.
I λ < −1: Exploding oscillations
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1st-Order Difference Equation Paths With Different λ
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Setting the First Period Value to -1
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MATLAB Code for Calculations
The previous graphs were generated using Matlab and saved as PNG files.

Here’s the code to do the calculations. Note how we didn’t have to code this
as y1(t,1) = lambda1*y1(t-1,1)

This is because (in a rare forgiving mood) Matlab lets you index vectors with
only one row or one column with a single number.
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And Here’s the Code for the Graphs
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Solving Difference Equations
Consider the n-th order linear difference equation

yt + a1yt−1 + a2yt−2 + ...+ anyt−n = 0

This is called a homogenous difference equation because the constant term on
the right-hand-side is zero.

Guess that the solution is of the form yt = Abt and insert into the equation

Abt + a1Ab
t−1 + a2Ab

t−2 + ....+ anAb
t−n = 0

Divide by Abt−n and this becomes

bn + a1b
n−1 + a2b

n−2 + ....+ an = 0

This is an n-th order polynomial equation with up to n distinct possible
solutions. This is known as the characteristic equation of the original
difference equation.
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Solving Difference Equations
Assuming n distinct roots, there are n different values b1, b2, ...., bn such that
yt = bti solves the difference equation.

Also yt = Aib
t
i works as a solution for any Ai as do sums of different solutions.

This gives a general solution of the form

yt = A1b
t
1 + A2b

t
2 + ...+ Anb

t
n

We can be more specific about values of the Ai if we are given n “boundary
conditions”, e.g. the first or last n values of the series yt . This allows you to
pin down a unique solution. (Intuitively, for most problems it makes sense to
have initial conditions rather than terminal ones but it depends on the
example.)

What if we have a non-homogenous equation?

yt + a1yt−1 + a2yt−2 + ...+ anyt−n = c

The constant “particular solution” below works and can be added to the
solution of the homogenous equation.

y∗ =
c

1 + a1 + a2 + ....+ an
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Example: Second Order Difference Equations

Consider the following second-order equation

yt + a1yt−1 + a2yt−2 = c

The constant solution is
y∗ =

c

1 + a1 + a2

The characteristic equation is

b2 + a1b + a2 = 0

The solutions are given by

b1, b2 =
−a1 ±

√
a21 − 4a2

2
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Example: Second Order Difference Equations
There are three types of solutions.

Case 1: Real Distinct Roots: a21 − 4a2 > 0 and the solution is of the form

yt = y∗ + A1b
t
1 + A2b

t
2

Case 2: Real Repeated Roots: a21 − 4a2 = 0 so the solution of the
characteristic equation is just b = − a1

2 and the solution is of the form

yt = y∗ + (A1 + A2t)
(a1

2

)t
The additional type of solution A2t

(
a1
2

)t
only works when there are two

repeated roots.

Case 3: Complex Roots: a21 − 4a2 < 0 so the characteristic equation has
two complex solutions b1, b2 = h ± iv implying a solution to the difference
equation of the form

yt = y∗ + A1 (h + iv)t + A2 (h − iv)t

where h = − a1
2 and v =

√
4a2−a21
2
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Second Order Difference Equations with Complex Roots

What kind of behaviour do we get from the solution?

yt = y∗ + A1 (h + iv)t + A2 (h − iv)t

A way to characterise this behaviour in terms of known mathematical
functions is to express the complex numbers in polar form

h ± iv = R (cos θ ± i sin θ)

where

R =
√
h2 + v2 =

√√√√(a1
2

)2
+

(√
4a2 − a21

2

)2

= a
1
2
2

θ = tan−1
(
v
h

)
De Moivre’s theorem can be used to characterise the solution as being of the
form

yt = y∗ + B1 sin θt + B2 cos θt
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An Example

Consider the second-order difference equation

yt − 1.05yt−1 + 0.3yt−2 = 3

What kind of roots does this have? Matlab can tell us using its roots

command. (Matlab has various ways of finding solutions to non-linear
equations. This is a command specifically for polynomials.)

So this characteristic equation has complex roots.

The next page shows time paths for the variable described by this difference
equation using two different sets of initial conditions.
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Time Paths with Two Different Sets of Initial Conditions
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Matlab Code for Previous Graph
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Example: Initial Conditions Pinning Down the Solution

Consider the following second-order equation

yt − 7yt−1 + 10yt−2 = 5

where y0 = 2 and y1 = 3.

The characteristic equation is

b2 − 7b + 10 = 0

with solutions b1 = 5 and b2 = 2.

A particular solution y∗ satisfies

y∗ − 7y∗ + 10y∗ = 5⇐⇒ y∗ =
5

1− 7 + 10
=

5

4

Calculate coefficients from

y0 = A1 + A2 + 5
4 = 2

y1 = 5A1 + 2A2 + 5
4 = 3

which solve to give A1 = 1
12 and A2 = 2

3 . Solution is yt = 1
125t + 2

32t + 5
4 .
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Some Lessons
It’s pretty easy to use Matlab to simulate discrete-time models!

Depending on the coefficients, linear discrete time models can generate
behaviour that is explosive, zig-zag, smoothly convergent or oscillating.

The particular paths that processes take will depend upon the initial
conditions.

Second-order difference equations can display more complex behaviour than
first-order equations. This is an illustration of a general point. The higher the
order of the difference equation—the larger the gap between the highest and
lowest time index—the more complex the dynamics can potentially be.

This latter point matters when specifying time series models: If your model
has lots of lags in it, it might exhibit odd behaviour.
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Part III

Systems of Difference Equations
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The Simplest System

Models with just one variable don’t feature much in economics.

More relevant are models with more than one variable and interactions
between these variables.

The simplest possible system of difference equations features two variables
and one lag:

y1,t = a11y1,t−1 + a12y2,t−1

y2,t = a21y1,t−1 + a22y2,t−1

A compact way to express this sytem is to use matrices. Defining the matrices

Yt =

(
y1t
y2t

)
A =

(
a11 a12
a21 a22

)
This system can be written as

Yt = AYt−1
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Generality of the First-Order Matrix Formulation: I
The model we’ve been looking at may seem like a small subset of all possible
systems of difference equations because it doesn’t have a constant term on
the right-hand side and only has lagged values from one period ago.

However, you can add a third variable here which takes the constant value 1
each period. The equation for the constant term will just state that it equals
its own lagged values. So this formulation actually incorporates models with
constant terms.

What about systems where current variables depend on values from more than
one period ago? Surely this makes things much more complicated?

Not really. It turns out the first-order matrix formulation can represent
systems with longer lags.

Consider the two-lag system

y1,t = a11y1,t−1 + a12y1,t−2 + a13y2,t−1 + a14y2,t−2

y2,t = a21y1,t−1 + a22y1,t−2 + a23y2,t−1 + a24y2,t−2
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Generality of the First-Order Matrix Formulation: II

Now define the vector

Zt =


y1,t
y1,t−1
y2,t
y2,t−1


This system can be represented in matrix form as

Zt = AZt−1

where

A =


a11 a12 a13 a14
1 0 0 0
a21 a22 a23 a24
0 0 1 0


This is sometimes called the “companion form” matrix formulation of a
dynamic model.
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Stability Conditions for Systems

We have seen how single-variable difference equations can display explosive
behaviour or else converge to a long-run equilibrium.

What about systems?

What are the conditions must the A matrix obey for these different outcomes
to emerge?

To answer this question, we need to discuss eigenvalues (sorry ...).
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Eigenvalues

A value λi is an eigenvalue of the matrix A if there exists a vector ei (known
as an eigenvector) such that

Aei = λiei

I’m going to assume here for simplicity that the n × n matrix A has n distinct
eigenvalues (it could have multiple eigenvectors associated with one
eigenvalue and then there would be fewer than n eigenvalues – this case
slightly complicates the situation and we’ll leave it aside).

Denote by P the matrix that has as its columns n eigenvectors corresponding
to these eigenvalues. In this case,

AP = PΩ

where

Ω =


λ1 0 0 0
0 λ2 0 0
0 0 .. 0
0 0 0 λn


is a diagonal matrix of eigenvalues.
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Stability Condition
Note now that this equation implies that

A = PΩP−1

This tells us something about the relationship between eigenvalues and higher
powers of A because

An = PΩnP−1 = P


λn1 0 0 0
0 λn2 0 0
0 0 .. 0
0 0 0 λnn

P−1

So, the difference between lower and higher powers of A is that the higher
powers depend on the eigenvalues taken to the power of n. If all of the
eigenvalues are inside the unit circle (i.e. less than one in absolute value) then
all of the entries in An will tend towards zero as n→∞.

So, a condition that ensures that the variables in the system tend towards a
stable long-run equilibrium is that the eigenvalues of A are all inside the unit
circle.

If any eigenvalues are greater than one, the solutions will generally explode.
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Diagonalising the System

If A has n distinct eigenvalues, then is a matrix of eigenvectors P such that

P−1AP = Ω

where Ω is a diagonal matrix with the n eigenvalues on the diagonal.

Let’s define a transformed set of variables

Zt = P−1Yt

Then we can write the dynamics of the transformed set of variables as

Zt = P−1Yt = P−1AYt−1 = P−1APZt−1 = ΩZt−1

This is a simple diagonal system consisting of n first-order single-variable
difference equations.

z1,t = λ1z1,t−1

z2,t = λ2z2,t−1

...

zn,t = λnzn,t−1

Karl Whelan (UCD) Deterministic Dynamic Models Autumn 2023 29 / 65



Initial Conditions and Solutions
The diagonalised system solves to give

z1,t = λt1z1,0

z2,t = λt2z2,0

...

zn,t = λtnzn,0

so the dynamics depend on the eigenvalues and the initial values of the zi s.
Since the zi variables are just linear combinations of yi,t , ..., yn,t these depend
on the initial conditions for our original variables.

Having solved a diagonalised system, we can recover the original variables via
Yt = PZt , so we get solutions of the form

y1,t = θ11z1,t + θ12z2,t + ...θ1nzn,t

y2,t = θ21z1,t + θ22z2,t + ...θ2nzn,t

...

yn,t = θn1z1,t + θn2z2,t + ...θnnzn,t

where the θs are the coefficient of P−1.
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On Stability of Economic Models
If all eigenvalues of this system are less then one in absolute value, then it is
clear the system will converge with all the variables heading towards specific
long-run levels.

If, however, at least one of the eigenvalues is greater than one in absolute
value, then for any general set of initial conditions, all or some of the variables
in the model will explode.

One caveat to this: In some macroeconomic models, the agents in the model
get to choose the initial conditions. We will provide an example later where
the equations describing a model of optimal consumption have generally
explosive solutions but optimising households choose an inital level of
consumption such that the coefficients on the solutions associated with
explosive eigenvalues are zero.

This idea that a model is generally explosive but there is a particular sub-set
of solutions that provide stable dynamics is common in macroeconomics.
Sometimes we refer to the stable and convergent part of the solution as the
“saddle path”.
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Example: Calculating Eigenvalues for a 2× 2 Matrix
Consider, for example, a 2× 2 matrix.

A =

(
a11 a12
a21 a22

)
Suppose A has two eigenvalues, λ1 and λ2 and define λ as the vector

λ =

(
λ1
λ2

)
The fact that there is a matrix of distinct eigenvectors which when multiplied
by A− λI equal a vector of zeros means that the determinant of the matrix

A− λI =

(
a11 − λ1 a12

a21 a22 − λ2

)
equals zero.

So we get the two eigenvalues of A by solving the quadratic formula

(a11 − λ1) (a22 − λ2)− a12a21 = 0

In practice, it is easy to get eigenvalues using the eig function in Matlab.
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Part IV

First-Order Differential Equations
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Continuous Time Dynamics

Up to now, we have been looking at discrete-time models: Time is indexed as
a sequence of numbers.

But for some issues, there are benefits to working in a continuous time format
where the time index can be any positive real-numbered value.

In these models, instead of difference equations we have differential
equations. These are equations involving derivatives of a function and the
equations are solved by finding out what the function is.

A first-order differential equation is one of the form

dy

dt
= f (y (t) , t)

where, in economics applications, the t is understood to be an index for time.
It is termed first-order because it features the first derivative of a function but
no higher derivatives.

We solve the equation by figuring out what the function f is.
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First-Order Linear Differential Equations

The simplest kind of differential equation is a linear first-order differential
equation of the form

dy

dt
+ αy = c

where c is a constant.

If c = 0, so the equation is
dy

dt
+ αy = 0

The solution is a function whose derivative is a multiple of the function itself.
This suggests we should guess that it involves the exponential function. And
indeed a solution that works is

y (t) = e−αt

To solve the non-homogenous version of the equation, we need to what we
call a “particular solution” and then add this to general solution for the
homogenous equation.

Karl Whelan (UCD) Deterministic Dynamic Models Autumn 2023 35 / 65



Simple and More Complicated Particular Solutions

For the simple model
dy

dt
+ αy = c

where c is a constant, the particular solution is a constant yp = c
α so the full

solution to the differential equation is

y (t) = e−αt +
c

α

For more complicated equations of the form

dy

dt
+ αy = c (t)

where the exogenous element is itself a function of time, the general principle
is still the same. First, solve the homogenous equation, then try to figure out
a particular solution and add the two together.
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Boundary Conditions

We have described how y (t) = e−αt is a solution of

dy

dt
+ αy = 0

But note that any solution of the form

yt = γe−αt

also works.

If we want to use the differential equation to pin down an actual time path for
y how do we figure out which of the possible solutions is the right one?

As with difference equations, one convention is to specific an initial condition
e.g. note that y0 = −γα so if we specify for example that y0 equals a specific
number, then this pins down the value of γ.

While people often discuss “initial conditions” or ”boundary condition”,
technically you only need to specify the value of yt at one point in time.
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Part V

Higher Order Differential Equations and

Systems
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Higher Order Linear Differential Equations

Solving the N-th order differential equation

dny

dt
+ α1

dn−1y

dt
+ α2

dn−2y

dt
+ ...+ αny = c

where c is a constant. It follows a similar process to first-order equations and
the solution method is analogous to the solutions for N-th order difference
equations we covered previously.

First, find a particular solution. In this case, with c being constant, the
particular solution is just yp = c

αn

Then find a solution to the homogenous equation

dny

dt
+ α1

dn−1y

dt
+ α2

dn−2y

dt
+ ...+ αny = 0

As before, start by guessing yt = Aert and use the fact that this means

dny

dt
= rnert
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Finding the Right Values for r

Taking all n of the derivatives of our guess yt = Aert , we get

Arnert + α1Ar
n−1ert + α2Ar

n−2ert + ...+ αnAe
rt = 0

The Aert terms can be cancelled out so we’re left with

rn + α1r
n−1 + α2r

n−2 + ...+ αn = 0

This is n-order polynomial is known as the characteristic equation and it can
have up to n distinct (and possibly complex) solutions. (This may be feeling a
bit familiar to you at this point ...)

The general solution is thus of the form

y (t) = A1e
r1t + A2e

r2t + ....Ane
rnt +

c

αn

where r1, r2, ..., rn are the roots of the characteristic equation.

This solution will solve the original differential equation for any combination
of coefficients A1,A2, ...,An. To obtain a unique solution, we need to have n
“boundary conditions” of the form y (0) = k0, y (t1) = k1, ...y (tn) = kn
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Second-Order Linear Differential Equations
Let’s work through a specific case. Second order linear differential equations
take the form

d2y

dt
+ α1

dy

dt
+ α2y = c

This gives a characteristic equation

r2 + α1r + α2 = 0

which has two solutions

r1,2 =
1

2

(
−α1 ±

√
α2
1 − 4α2

)
As with our analysis of second-order difference equations, there are three
distinct cases.

Karl Whelan (UCD) Deterministic Dynamic Models Autumn 2023 41 / 65



Again, Three Cases
Case 1: Distinct Real Roots. In this case α2

1 > 4α2 and the behaviour of
the solution

y (t) = A1e
r1t + A2e

r2t +
c

αn

depends on the signs of r1 and r2. Assuming non-zero values of A1 and A2,
this solution will explode to plus or minus infinity if either r1 or r2 are positive.
If both are negative, the solution will tend towards c

αn
.

Case 2: Identical Real Roots. In this case, α2
1 = 4α2 and there is only one

solution, r . You can show that the following works as a solution in this case

y (t) = A1e
rt + A2te

rt +
c

αn

Again, its behaviour will depend on whether r is positive or negative.
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Case 3: Complex Roots

In this case α2
1 < 4α2 and we get complex roots

r1,2 = h ± iv

We can use the identities

e ix = cos x + i sin x

e−ix = cos x − i sin x

to show the solution can be written as

y (t) = eht (A3 cos vt + A4 sin vt) +
c

αn

where A3 = A1 + A2 and A4 = i (A1 − A2).

These solutions display oscillations. Whether they decline over time or
explode depends on the sign of h. And since h = −α1

2 , this depends on α1. If
α1 is positive, the oscillations will decay over time.
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Systems of Linear Differential Equations

Often when differential equations refer to changes over time, people use the
shorthand

ẏ (t) =
dy

dt

Now consider the system of linear differential equations

ẋ1 (t) = a11x1 (t) + a12x2 (t)

ẋ2 (t) = a21x1 (t) + a22x2 (t)

Let’s collect this together using vector and matrix notation.(
ẋ1 (t)
ẋ2 (t)

)
=

(
a11 a12
a21 a22

)(
x1 (t)
x2 (t)

)
Or, in shorthand

ẋ = Ax
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Getting Solutions
As before, in the case where A has n distinct eigenvalues, there is a matrix of
eigenvectors P such that

PAP−1 = D

where D is a diagonal matrix with the n eigenvalues on the diagonal.

Let’s define a transformed set of variables

y = Px

Then we can write the dynamics of the transformed set of variables as

ẏ = Pẋ = PAx = PAP−1y = Dy

This is a simple diagonal system that gives n first-order differential equations
in one variable. For instance, in the case of n = 2, we get

ẏ1 = λ1y1

ẏ2 = λ2y2

...

ẏn = λnyn
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Getting Solutions

These equations can be solved separately to give

y1 (t) = A1e
−λ1t

y2 (t) = A2e
−λ2t

...

yn (t) = Ane
−λnt

And given these solutions, the original x variables can be obtained from

x = B−1y
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Part VI

Taylor Series and Nonlinear Differential

Equations
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Taylor Series
The Taylor series approximation for a function around point a is the following:

f (x) = f (a) + f ′(a)(x − a) +
1

2
f ′′(a))(x − a)2 +

1

3!
f ′′′(a))(x − a)3 +

...
1

n!
f n(a)(x − a)n + ...

where n! = (1)(2)(3)...(n − 1)(n).

Some Taylor series approximations characterise the behaviour of the function
for all real but others only hold in a specific interval around the point a.

Mathematicians sometime express these series as

f (x) = f (a) + f ′(a)(x − a) +O (2)

In other words, f is a function of the first two terms of the approximation plus
terms that involve powers of 2 or higher. If a is small, then these O (2) may
be close to zero and we can approximate f as a linear function:

f (x) ≈ f (a) + f ′(a)(x − a)

Taylor series are used a lot in macroeconomics.
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Taylor Series: Example
Consider the function f (x) = 1

1−x . Approximating this series around zero
gives

f (x) =
∞∑
n=0

f n(0)

n!
xn

You can show that

f n(x) =
n!

(1− x)n+1 ⇒
f n(0)

n!
= 1

This means the Taylor approximation around zero is

1

1− x
= 1 + x + x2 + x3 + .....+ xN ...

which is, of course, the famous multiplier formula from Macro 101.

This approximation works for −1 < x < 1 but not outside this range. (Why
might the approximation not work some times?)

1

1− 5
6= 1 + 5 + 52 + 53 + ...
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The Exponential Function
The number e ≈ 2.71828 is a special number such that the function

dex

dx
= ex

One way to see why the number is 2.718 is to use the Taylor series
approximation for a function

f (x) = f (a)+f ′(x)(x−a)+
1

2
f ′′(x))(x−a)2+

1

3!
f ′′′(x))(x−a)3+...

1

n!
f n(x))(x−a)n+...

where n! = (1)(2)(3)...(n − 1)(n).

If there is a number, e that has the property that ex = f (x) = f ′(x), then
that means that all derivatives also equal ex . In this case, we have

ex = ea + ea(x − a) +
1

2
ea(x − a)2 +

1

3!
ea(x − a)3 + ...

Setting x = 1, a = 0, this becomes

e = 1 +
1

2
+

1

3!
+

1

4!
+ .....

This converges to 2.71828.
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Multivariate Taylor Series
You can also approximate multivariate functions using Taylor series. For
example, a function of two variables F (xt , yt) can be approximated as

F (xt , yt) = F (x∗t , y
∗
t ) + Fx (x∗t , y

∗
t ) (xt − x∗t ) + Fy (x∗t , y

∗
t ) (yt − y∗t )

+
1

2
Fxx (x∗t , y

∗
t ) (xt − x∗t )2 +

1

2
Fxy (x∗t , y

∗
t ) (xt − x∗t ) (yt − y∗t )

+
1

2
Fyy (x∗t , y

∗
t ) (yt − y∗t )2 + ...

To give an example, for the function z = y log x , the linearised Taylor
approximation around (a, b) is

z ≈ b log a +
b

a
(x − a) + log a (y − b)

The 3-d picture on the next page shows the size of the approximation error for
values of x and y between zero and 10, using a = 5, b = 5.

As you can see, the approximation errors get very big as x approaches zero.
Ultimately, it is hard to approximate highly nonlinear functions with linear
ones. The page after shows, however, that the approximation works very well
in the window [4.5, 5.5].
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Approximation Error for z = y log x on [0, 10]× [0, 10]
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Approximation Error for z = y log x on [4.5, 5.5]× [4.5, 5.5]
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Matlab Code for Previous Two Graphs

Karl Whelan (UCD) Deterministic Dynamic Models Autumn 2023 54 / 65



Nonlinear Difference Equations
Linear difference equations represent only a small subset of the kinds of
dynamics that can be generated by economic models. A more general model
of nonlinear difference equations would take the form

ẏ1 (t) = f1 (y1, y2, ..., yn)

ẏ2 (t) = f2 (y1, y2, ..., yn)

.. .. ..

ẏn (t) = fn (y1, y2, ..., yn)

There is no general solution method for nonlinear differential equations.
However, one way to understand their local behaviour around particular points
is to use a multivariate Taylor approximation to linearise the functions around
a particular point, a. This will give something of the format

ẏ = f (a) + J(a)y

where J(a) is a so-called Jacobian matrix of partial derivatives of the f
functions evaluated at a. As a linear system, this can be solved to get a sense
of how they model’s dynamics behave in the region of a.
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Example of Local Approximation

Consider the example

ẋ1 (t) = F1 (x1, x2) = − log x1 − log x2

ẋ2 (t) = F2 (x1, x2) = −x22 − 2x2 + 3

This system has an equilibrium at (x1, x2) = (1, 1). To find out whether this is
a stable equilibrium, we linearise the F functions around (1, 1) as follows(

ẋ1
ẋ2

)
=

(
F1 (1, 1)
F2 (1, 1)

)
+

(
∂F1(1,1)
∂x1

∂F1(1,1)
∂x2

∂F2(1,1)
∂x1

∂F2(1,1)
∂x2

)(
x1 − 1
x2 − 1

)
We calculate these partial derivatives as follows

∂F1

∂x1
= − 1

x1

∂F2

∂x2
= − 1

x2
∂F2

∂x1
= 0

∂F2

∂x2
= −2x2 − 2
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Local Dynamics Around the Equilibrium

Evaluating these partial derivatives at (1, 1), our linearly approximated system
becomes (

ẋ1
ẋ2

)
=

(
F1 (1, 1)
F2 (1, 1)

)
+

(
−1 −1
0 −4

)(
x1 − 1
x2 − 1

)
We calculate the eigenvalues by setting the determinant of the Jacobian
matrix equal to zero. ∣∣∣∣ −1− λ −1

0 −4− λ

∣∣∣∣ = 0

This implies
(λ+ 1) (λ+ 4) = 0

so the system has two negative roots λ1 = −1 and λ2 = −4.

This means the system is stable around the equilibrium (1, 1).
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Part VII

Numerical Methods
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Finite Difference Methods

It is nice to have a full analytical solution of our model. You can just evaluate
the analytical formula at various points in time.

But often this isn’t possible or at least isn’t possible without lots of analytical
calculations.

And in practice, often all we want is to figure out how our series behave over
time. This can generally be done using numerical methods.

One class of methods for solving systems of ordinary differential equations is
finite-difference methods.

The best known finite-difference method is the Euler method, which relies on
the first-order Taylor series approximation:

f (t + h) ≈ f (t) + f ′(t)h

and uses it to approximate derivatives as

f ′(t) ≈ f (t + h)− f (t)

h
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Applying the Euler Method
Consider a system of differential equations:

ẏ1 (t) = f1 (y1(t), y2(t))

ẏ2 (t) = f2 (y1(t), y2(t))

We can approximate this as

y1 (t + h)− y1 (t)

h
= f1 (y1(t), y2(t))

y2 (t + h)− y2 (t)

h
= f2 (y1(t), y2(t))

Which can be re-written as

y1 (t + h) = y1 (t) + hf1 (y1(t), y2(t))

y2 (t + h) = y2 (t) + hf2 (y1(t), y2(t))

This is a recursive system, meaning once we have calculated the values at
time t, we can then move on to calculate the values at time t + h. We
implement this by starting at some initial time t0 and then calculating values
for t0 + h, t0 + 2h, t0 + 3h, ....t0 + Nh.
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Example: Using Matlab to Simulate a System
Consider our previous system

ẋ1 (t) = F1 (x1, x2) = − log x1 − log x2

ẋ2 (t) = F2 (x1, x2) = −x22 − 2x2 + 3

Here’s a Matlab programme that simulates the system from arbitrary initial
conditions. You can see how the model converges from each set of initial
conditions towards its equilibrium point of (1, 1).
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Simulation With x1 (0) = 2, x2 (0) = 0.1
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Simulation With x1 (0) = 0.1, x2 (0) = 2
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Applying the Euler Method to Higher-Order Derivatives
The Euler method can be applied to differential equations involving
higher-order derivatives by, for example, using the same approach to get an
approximation to the the first derivative of the first derivative. For example,
we can approximate the second derivative as

f ′′ (t + h) ≈ f ′ (t + h)− f ′ (t)

h
(1)

≈ f (t + 2h)− f (t + h)

h2
− f (t + h)− f (t)

h2
(2)

≈ f (t + 2h)− 2f (t + h) + f (t)

h2
(3)

To implement this within a recursive structure, you will be implementing a
second-order difference equation: To know f (t + 2h), you need to know
f (t + h) and f (t). This means you will need two initial conditions for each
equation in your system.

Applying the Euler method to calculate a third-order derivative you get an
expression with three terms.

f ′′′ (t + h) =
f (t + 3h)− 3f (t + 2h) + 3f (t + h)− f (t)

h2
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Other Finite Difference Methods

Euler’s method has the advantage of simplicity but it can be inaccurate in
some cases.

For example, our earlier application used f1 (y1(t), y2(t)) to approximate
changes between time t and time t + h. If the function f1 changes quickly,
this might turn out to be an inaccurate assumption.

There are many more sophisticated algorithms. One of them, the Runge-Kutta
algorithm works like this when applied to our two variable example:

dy1 = f1 (y1(t), y2(t))

dy2 = f2 (y1(t), y2(t))

y1 (t + h) = y1 (t) + 0.5 ∗ h [f1 (y1(t) + dy1, y2(t)) + dy1]

y2 (t + h) = y2 (t) + 0.5 ∗ h [f2 (y1(t), y2(t) + dy2) + hdy2)

Applying this method to our recent example gives basically the same time
path. But that is because the convergence paths are almost monotonic so the
dynamics are fairly predictable. In other models with more complex dynamics,
the Euler method may not work so well.
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