PhD Macroeconomics 1
10. Finite-Horizon Deterministic Dynamic
Programming

Karl Whelan

School of Economics, UCD

Autumn 2023

Karl Whelan (UCD) Dynamic Programming Autumn 2023 1/57

Part |

Introduction to Dynamic Programming

Karl Whelan (UCD)

Dynamic Programming

Limitations of Our Existing Models

@ The dynamic stochastic models we looked at so far can be used to examine
lots of macroeconomic issues but they have limitations. These include

@ Infinite Lifetimes: To allow optimal decision-making rules to be the
same for each period, we assumed people (and firms) lived forever.
While the infinite horizon assumption might be a useful one on some
occasions, it clearly isn't for all cases.

@ Treatment of Uncertainty: We allowed for uncertainty and stochastic
shocks but only in a very “smooth” fashion, with random variables being
autoregressive processes.

© Constraints: We did not describe how to handle constraints e.g. limits
on how much debt that households or firms are allowed to take on.

© Continuous Decisions: We modelled agents as making decisions about
variables that could take on any values. In some cases, however, it is
important to model “all of nothing” decisions (accept a job or not, start
an investment project or not).

@ We will introduce a technique for solving dynamic models that can address all
of these weaknesses. We will develop and solve life-cycle models of
consumption and saving in which people have finite lifetimes, also introducing

uncertainty and constraints.
Karl Whelan (UCD) Dynamic Programming Autumn 2023 3/57

Dynamic Programming

@ Dynamic programming is a popular method for solving discrete-time dynamic
optimisation problems.

@ It is an intuitive technique—following the logic of sub-game perfection from
game theory—and be easily adapted from deterministic problems to those
that incorporate uncertainty.

@ It can also solve problems that are not easily solved using the Lagrangian
methods we covered previously. For example, it can be applied to problems
where the decision variable is not continuous (e.g. an agent deciding whether
or not to accept a job) and to problems featuring occasionally binding
constraints (e.g. limits on how much people can borrow).

@ Let's start with an example of the kind of problem we can use dynamic
programming to solve.

T

MAX

{Uhxt} Z F (Xta ug, t)
t=1

subject to
Xey1 = & (Xt, Ut)
x; is called the state variable and u; is the control variable.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 4/57

The Value Function

@ Now define the value function of this problem at time t as
MAX T
Vi () = {uik Dt S0 F (st)
k=t

@ In other words, V; (x;) is the value obtained by maximising the sum of the
payoffs for the final T — t 4 1 periods.

@ The key insight of dynamic programming is Bellman’s Principle of
Optimality which states that an optimal policy must have the property that,
whatever the initial state is, the remaining decisions given this state must
constitute an optimal policy. Mathematically, this can be expressed as a
recursive equation known as a Bellman equation:

Vi (xe) = ‘I{wlj‘t)i [F (xe, ug, t) + Vi (xe41)]

subject to
Xt+1 = & (Xn Ut)

Karl Whelan (UCD) Dynamic Programming Autumn 2023 5/57

The Value Function with Discounting

@ In Economics, usually the function being maximised involves geometric
discounting, i.e. we are solving

max T
{utvxt}25tF(Xt7ut)
t=0

@ In this case, the Bellman equation can adapted to be written as

MAX
Vi (xe) = {ue} [F (%, ur) + BVet1 (Xe1)]

subject to
Xey1 = & (Xe, Ut)

Karl Whelan (UCD) Dynamic Programming Autumn 2023 6 /57

Calculating the Value Functions

@ The Bellman equation suggests a way to calculate a sequence of value
functions based on backward induction.

@ Start with the last period, T. In that case, you do not have to worry about
the value of the state variable in period T 4 1 and the value function is simply

Vr (xr) = (e {F (xr, ur)}

@ Given V7 (x7), next you calculate

MAX
Vr_1(x7-1) = {ur—1} [F (x7—1, ut—1) + V7 (x7)]

subject to
xT =g (x7-1,UT-1)

@ Once you have calculated Vr_; (x7—_1), you can then calculate Vr_5 (x7-2)
and so on until you have calculated all T value functions.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 7/57

Calculating Optimal Policies

@ Once you have calculated the value functions, you can characterise the
optimal [x, u;] path as follows.

@ The Bellman Equation is
MAX
Vi (%) = {ue} [F (%, ur) + BVera (8 (xe, ue))]
@ The first-order condition for this problem is

OF (X, uf)
Ju

3g (Xh U:)

ou =0

+ BV (g (xe, 7))

@ We can also obtain V'’ by differentiating the Bellman equation and using the
envelope theorem (meaning you can ignore terms describing the derivatives of
uy,, with respect to x because these must equal zero). This gives us:

OF (x¢41, U7 . 0g (x¢41, Uf
Viea (xe1) = (t(;)t t+1) +B8Vips (g (Xt+lv ”t+1)) z (t;{ Hl)

Karl Whelan (UCD) Dynamic Programming Autumn 2023 8/57

Recursive Optimal Policies

@ This gives us two equations

OF (xt, uy) oy 98 (e, uy)
a; : B t+1 ((Xt? ut)) aij £ = 0
OF (X¢y1, uf . 0g (xey1, Uf
Vr/+1 (xt1) = % + 5Vt/+2 (g (Xt+17 Ut+1)) %

@ From these, we can obtain a set of optimal policies of the form
ur=f (Xt—17 ut—l)

This is usually called the policy function.

@ This can be combined with

Xt =8 (Xt—la Ut—l)

to give a recursive solution so that starting from whatever initial conditions we

have for the state variables, xo we can use these equations to calculate
optimal values for both state and control variables.

Karl Whelan (UCD) Dynamic Programming Autumn 2023

9/57

Part |l

An Example: Having Your Cake and Eating It

Karl Whelan (UCD)

Dynamic Programming

Optimal Cake Eating
@ The problem is the following

» You're given an initial amount of cake of size Xj in period one.

> You've got until period T to eat your cake before health and safety rules
dictate that the cake cannot be eaten anymore.

You get period-by-period utility of log C; from the cake you eat.

And you discount utility using discount factor 3.

v

v

@ In other words, your problem is

-
max » Bflog C
(3L, ; ‘
subject to
Xt+1 =X — G
with Xj given.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 11/57

Backward Induction: Start At The End

@ The Bellman equation for this problem is

Ve (X) = mcax [log C + BVi1 (X — C)]

@ Let's start at the end. It's period T. It's your last chance to eat the cake so

optimal policy is eat all the cake that is left.

@ So, entering period T with cake of X7, the value function is
Vr (X7) = log X1
@ Given this, your problem in period T — 1 is to maximise

Vo1 (Xr-1) = max [log C+—1 + Blog (X7-1 — Cr—1)]

which implies a first-order condition of the form

1 B
Cro1 Xro1— G

Karl Whelan (UCD) Dynamic Programming Autumn 2023

12/57

Calculating V71 (X7-1)

@ This first-order condition can be re-written

Xt

Cr_1 =
T-1 1453

@ Which means we can calculate the value function of period T — 1 as

Vroi(Xr-1) = log (fj:g) + Blog (XT—l - %)

= e v (135

(1+B)log X7_1+ Blog 8 — (14 3) log(1 + j3)

@ This can be used to calculate Vr_5 (X7_2).

Karl Whelan (UCD) Dynamic Programming Autumn 2023 13 /57

Calculating V75 (X7-2)

@ The Bellman equation in period T — 2 is
Va2 (Xt-2) = max llog Cr—2 + BVr_1 (X7—2 — C7-2)]
T—1

which implies a first-order condition of the form

L 5aep)
Cro Xr20—Cro

@ This gives an optimal consumption level of

X122

Croo=—r-0
I Ny

@ And V7_;, (X7_2) turns out to be of the form

Vr_o(X7_2) = (1 + B+ %) log X7_»

Karl Whelan (UCD) Dynamic Programming Autumn 2023 14 /57

What Does the Solution Look Like?

@ This can be iterated all the way back to the period zero and then the initial
consumption level is picked, which determines all the future values. If we had
set this problem up as a Lagrangian, we would have obtained a first-order
condition of the form

1 B

[

= Crr1 =BG

which means geometrically declining consumption of cake.

@ Initial consumption is set so that the cake is gone after T periods, meaning
(1+8++..+B8T) G=X

which, using identities about geometric sums simplifies to

1-5

Q=15

X1

@ As T — o0, the solution moves towards C; = (1 —) X;.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 15 /57

HARA Utility and Analytical Solutions

@ In some cases, you can obtain analytical solutions for value functions in
dynamic programming models.

@ For instance, in this case the value functions all took logs of the state variable,
the same function as the household had for its period by period utility.

@ This property holds if utility is of the Hyperbolic Absolute Risk Aversion

(HARA) class i.e.
1—~ (aC,)"
() =-—" +b
()= (=
then the value function has the same functional form as the utility function.

@ For example, if the utility function is of the form U (C;) = C2, then it turns
out that a value function of the form V; (K;) = ag + a1 A% will work where A
is assets.

@ This utility function also generalises to include exponential utility function (set
b=1and 7 — o0) and log utility (set a=1 and v — 0).

@ In general, however, for most realistic problems in economics, there is no
analytical solution to dynamic programming problems and we need to use
numerical tools to solve these models.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 16 /57

Karl Whelan (UCD)

Part IlI

Numerical Solution Methods

Dynamic Programming

The Need for Numerical Solution Methods

@ While there are occasional dynamic programming problems that have
analytical solutions, many of the problems we are interested in do not have
such solutions.

@ A 1958 review of Bellman's book on dynamic programming in Economica
dismissed it by pointing out “The trouble is that the type of mathematical
problem posed in this book is such that it is only under excessively simplified
conditions that one can ever hope for a pleasing solution."

@ Even when analytical solutions exist, it may be very time-consuming to derive
analytical solutions for a finite-horizon model with a large T.

@ And once we introduce realistic elements like uncertainty and occasionally
binding constraints, there are generally no analytical solutions.

@ Here, we will introduce numerical dynamic programming.

@ Our starting approach will be to work with a slightly modified cake-eating
problem, for which we know the analytical solution, and then design and
adapt our numerical calculations to see how they match this solution.

@ These numerical methods can then be adapted to solve more complex
problems.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 18 /57

A Generalised Cake-Eating Problem

@ We will use a somewhat generalised version of the cake-eating problem with
more general preferences and the asset taking the form of an investment that
yields a rate of return.

@ The problem is the following

» You're given an initial stock of assets of value A; in period one.
» You've got until period T to eat your cake before health and safety rules

dictate that the cake cannot be eaten anymore.
g
=

v

You get period-by-period utility of from the cake you eat.
And you discount utility using discount factor 3.

v

@ In other words, your problem is

T

cl
max Zﬂtfi

(L= 1-7

subject to
Aryr = (1+r) (A — G)

with A; given.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 19 /57

The Analytical Solution

@ Let) -
o = ﬁ? (]_ + r)T

@ Then the analytical solution for the optimal path for consumption for this
problem is

t—1

l—«a =1
G = (l—aT) BL+r) " A
@ Knowing this, we can calculate the optimal path for assets using the identity
subject to
Aryr = (14 r) (A — G)

with A; given.

@ Note that consumption can either increase or decrease over time depending on
whether 5 (1 + r) is greater than or less than one. If it equals one (as in the
Hall random walk model of consumption) then consumption will be constant
for the entire time.

@ We will now work on a numerical method for solving this problem and assess
it by comparing the answers it generates to the known true solution.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 20/57

Numerical Approximation Methods

@ We want our numerical method to start in period T and calculate the value
function of the state variable, which is assets on hand, VT (A7).

@ Then, we want it to work backward in time to calculate all of the other
V't (A;) functions, from which we can calculate optimal behaviour.

@ In theory, we need to find out the value of V* (A;) for every possible value of
assets.

@ In practice, computers can't evaluate functions at every single feasible real
numbered value for assets so instead we pick a number of points on a grid
and make assumptions about the behaviour of the value function at points in
between.

@ For example, you could assume the function is piece-wise linear between the
selected grid point.

@ We will start with a very simple grid-based approach to solving a simple
version of this model with no labour income and no constraints on borrowing.

@ Later we will refine our computational method and discuss further possible
refinements.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 21 /57

A Simple Grid-Based Approach

We will now discuss a Matlab programme that takes a simple approach to
solving this model using numerical methods.

Rather than try to calculate what the value functions equal for all possible
values for assets on hand, we only look at points on a grid, going from zero to
a multiple of the starting value for assets.

We normalise starting assets equal to one and, in this case, because we have
calibrated households to be “impatient” (r = 0.01, 8 = 0.95), we know the

solution always involves falling assets, so we don't consider values for assets

on hand higher than the starting level.

When you chart your solution, it will be clear whether your choice of a
restricted grid has affected the solution—you see periods where assets on
hand consistently equal the maximum or minimum amount you have allowed.
You can go back and reset the maximum or minimum asset values so they
don't constrain the households.

The preliminaries in the programme set the coefficients and initialise the
various things we will be calculating (value functions, policy functions, final
choices of optimal consumption and assets) equal to zero.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 22 /57

Setting Up the Programme

% 1. Preliminaries
tic; % start the clock
clear all;

close all;

cle;

global gamma

%% 2. Parameter Values
T =60 ; % Finite Horizon
time = linspace(1,T+1,T+1);

ngrid = 300; % numper of data points in the grid
gamma = 1.5 ; % CRRA utility parameter

r = 0.81; % Interest rate

beta = 2.95; % discount factor

Startingd = 1.5; % Starting amount of assets
minCons = le-5; % min allowed consumption

%

% 3. Deciding how high to let the asset grid go rclative to starting assets
Maxassetratio = 1;

amin =0 ;

amanx = StartingA*Maxassetratio; % Top of asset grid is a multiple of the starting assets

Index = NaN(T+1,1);

Index(1,1) = ngrid / Maxassetratio ; % First entry of Index is adjusted to have correct starting value
%

% 4. Initialising matrices

v = NaN(T, ngrid);

PolicyA = NaN(T, ngrid);

PolicyC = NaN(T, ngrid);
IndexA NaN(T, ngrid);

Agrid = linspace(amin,amax,ngrid);
optimala = NaN(T+1,1);

OptimalC = NaN(T+1,1);

Analyticald = NaN(T+1,1);

AnalyticalC = NaN(T+1,1);

Cons_options = NaM(ngrid, 1);
Value_options = NaN(ngrid, 1};

Karl Whelan

Solving for the Final Period. Then Working Backwards

@ With preliminaries set, the programme then calculates the last period’s value
function.

@ This is easy: The “consumption policy” is to set consumption equal to assets
on hand so the value function equals the utility function evaluated at assets
on hand. (I have specified the utility function in a separate programme).

@ The programme then uses a loop to gradually work backwards over time to
calculate the rest of the value functions.

@ For each period, the programme looks at the options for this period'’s
consumption and next period’s assets, given a fixed value of this period’s
assets.

@ The lower consumption is, the higher assets will be next period. Negative
consumption is not allowed, so values of assets that are infeasible are not
considered when calculating optimal policy.

@ For each level of assets on hand, the optimal consumption value (and thus the
optimal value of next period’s assets) is calculated via applying the Bellman
equation.

@ With policy rules solved, we then solve forward from the initial level of assets.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 24 /57

Solving for the Final Period. Then

Working Backwards

%% 5. Final Period
% Set the terminal value function to consuming all assets
[Elfor i=l:ngrid
V(T,i} = utility(Agrid(i)) ;
PolicyC(T,i) = Agrid(i);
Lend

%%
Efnr t=T-1:-1:1

for i=l:ngrid % Looping over current period assets
Cons_cptions = Agrid(i) - Agrid / (1l+r);

VIl = V(t+l,:):

Value_options = utility(Cons_options) + beta*VTl:

[max val,idx] = max(Value options);
Vic, i) = max_val;
IndexA(t,i) = idx;

PolicyhA(t,i) = Agrid(idx);
PolicyC(t,i) = Cons_options (idx):

Fend * i loop

fprincf(*Solved pericd &d of :d.\n',t, T)
Lend 2t loop

Karl Whelan

% 6. Working backwards in time to calculate optimal policy functions

Cons_options (Cons_options <0) = NaM; % Not allowing negative values of consumption

Solving Forward from Initial Capital Using the Policy Rules

B3
% 7. Moving forward from the first period to calculate optimal path for
% assets and consumption

& First calculate the sequence of optimal points on the grid, starting from
% our % initial value for assets.

for t=2:T

Tlndsx:c} = IndexA(t-1,Index(t-1));
end

Index(T+1) = 0O:

% Then translate the optimal points into assec values from the policy
% matrix
Cptimald(l) = Startingd;

for t=2:T
To;;:mam(:} = Policyh(t-1,Index(t-1));
end
Optimald(T+1) = 0;

% Then calculate the implied values of consumption
for t=1:T-1

OprimalC(t) = OptimalA(t) -Optimall(t+l)/(l+r) :
end

OptimalC(T) = OptimalA(T);

OprimalC(T+l) = 0:

Karl Whelan

amic Programmi

Solution Quality Depends on Grid Size

@ How well does our numerical solution method do?

@ We started with a grid of size 100. We see that it approximates the true
analytical solution for assets quite well.

@ Despite this, the chart for consumption (which is clearly on a different scale to
the one for assets) shows our solution for consumption is much more “jerky”
than the true solution.

@ The problem is we are only evaluating assets for a limited number of possible
values and so the “best” consumption levels that we find are not really the
best, just the best given the limited set of possible asset values we provided.

@ The following pages show how this problem can be fixed by specifying a finer
and finer grid, with more and more possible values for assets.

@ By the time the asset grid has 5000 values, the numerical solution and
analytical solution for consumption are essentially the same.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 27 /57

Actual Assets versus Analytical: Grid of Size 100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

Assets
T T
—Numerical
I —Analytical
1 L L Il L 1 L 1 L Il L
5 10 15 20 25 30 35 40 45 50 55 60
Age
= = =

Karl Whelan (UCD)

Dynamic Programming

Actual Consumption

versus Analytical: Grid of Size 100

—Numerical
—Analytical

Karl Whelan (UCD)

25 30 35 40 45 50 55 60

Dynamic Programming

Actual Assets versus Analytical: Grid of Size 500

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

Assets
T T
—Numerical
I —Analytical
1 L L Il L 1 L 1 L Il L
5 10 15 20 25 30 35 40 45 50 55 60
Age
= = =

Karl Whelan (UCD)

Dynamic Programming

Actual Consumption versus Analytical: Grid of Size 500

—Numerical
—Analytical

Karl Whelan (UCD)

Dynamic Programming

50 55 60

Actual Assets versus Analytical: Grid of Size 1000

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

Assets
T T
—Numerical
I —Analytical
1 L L Il L 1 L 1 L Il L
5 10 15 20 25 30 35 40 45 50 55 60
Age
= = =

Karl Whelan (UCD)

Dynamic Programming

Actual Consumption versus Analytical: Grid of Size 1000

—Numerical
—Analytical

Karl Whelan (UCD)

Dynamic Programming

50 55 60

Actual Consumption versus Analytical: Grid of Size 2000

—Numerical
—Analytical

Karl Whelan (UCD)

Dynamic Programming

50 55 60

Actual Consumption

versus Analytical: Grid of Size 5000

—Numerical
—Analytical

Karl Whelan (UCD)

25 30 35 40 45 50 55 60

Dynamic Programming

Two Improvements Using Interpolation

@ The previous programme works ok but we can improve speed and accuracy.

@ One problem with large grids is it takes longer for the programme to solve.
This isn't that big a deal for this specific problem. The chart on the previous
page took my (admittedly fairly fast) computer just under a minute to solve.

@ However, when we move on to introducing uncertainty, we will have to
perform these kind of calculations many many times so solving this kind of
grid size will take a really long time.

@ Our next programme uses two different grids, one small (n = 300) and one
big (n = 5000). We use the smaller grid to consider starting assets for each
period but then use the bigger grid to allow for more precise calculation of the
optimal value of consumption. This is much quicker but doesn't lose much
accuracy.

@ We also improve accuracy by not using the restricted consumption policy
functions calculated over the 300 asset grid points but instead linear
interpolated version of these functions that can be evaluated at any feasible
value for assets on hand, not just those on the grid. This programme is
almost 20 times faster and produces essentially the same output

Karl Whelan (UCD) Dynamic Programming Autumn 2023 36 /57

% 1. Preliminaries
tic; % stort the clock
clear all;

close all; clc;

global gamma

%% 2. Parameter Values

T =6 ; ¥ Finite Horizon
time = linspace(1,T+1,T+1);

gamma = 1.5; % CRRA utility parameter

r = 0.03; % Interest rate

beta = 0.95; % discount factor

startingd = 1; % Starting amount of assets

minCons = le-5; % min allowed consumption

%

% 3. Deciding how high to let the asset grid go relative to starting assets
Startingd -1

Maxassetratio = 1;

ngridl = 300;

ngrid2 = 5000;

amin =e;

amax = StartingA*laxassetratio;

agrid = linspace(amin,amax,ngridl};

agridz = linspace(amin,amax,ngrid2};

E3

% a. Initialising matrices

vFinal = NaN(1,ngridl);

PolicyA = NaN(T, ngridi);
PolicyC = NaN(T, ngridl);

IndexA = NaN(T, ngridl);

v = NaN(T, ngridl);

vtk = NaN(1,ngrid
OptimalA = NaN(T+1,1);
OptimalC = NaN(T+1,1);
Analyticald = NaN(T+1,1);
analyticalc = NaN{T+1,1);

v = NaN(T, ngrid2);

Cons_options = Nal(ngrid2, 1);
Value_options = NaN{ngrid2, 1);

Karl Whelan

Two Grids. Need to Adjust Size of Some of the Matrices

%% 5. Final Period
% Set the terminal value function CO consuming all assets

for i

grial
VFinal(1) = utility(agrid(i)) ;
PolicyC(T,1) = agrid(i);

ena

% Interpolating the final-period value function over a finer grid
V(T,:) = interpl(agrid,¥Final(:),agrid2,’linear’, 'extrap’);

2%
% €. Working backwards in time to calculate optimal policy functions
Efnx T=T-1:-1:1

for i=l:ngridl % Looping over current period assets
Cons_options = agrid(i) - agrid2 / (1+r);:
Cons_options (Cons_options <0) = NaN: % Not allowing negative valuss of consumption

VT1 = V{c+l,:):

Value_options = utility(Cons_options) + beta*VIl:

[max_val,idx] = max(Value_options):
TV(c, 1) = :

Indexh(c, i)

Policyh(c, i) agrid2 (idx);

PolicyC(c,4i)
fend & i loop

Cons_options (idx):
% Again interpolating the value function over a finer grid
V(t,:) = interpl(agrid,TV(t,:),agrid2,'linear’, 'extrap'):

fprintf('Solved period 3d of 3d.\n',t, T
Lend %t loop

LERVLEET namic Programmin,

Using Interpolation to Allow More Precise Policy Functions

Solving Forward Using the Interpolated Policy Functions

4%
% 7. Moving forward from the first period to calculate optimal path for assets and consumption
Optimali(l) = Startingh;
for t=1:T-1
BC = PolicyC(t,:);
OptimalC(t) = max (0, interpl(agrid, PBC, Optimalk(c),'linsar','sxtzap')):
Optimald(c+l) = (1+r)* (OptimalA(t) - OptimalC(ct)):
=nd

OptimalC(T,1) = Cptimald(T);:
OptimalC(T+1,1) 0;
Optimala(T+1,1) = 0;

Karl Whelan

amic Programmi

Actual Consumption versus Analytical: Double Grid
(300, 5000) and Continuous Policy Function

ps

—Numerical
—Analytical

Karl Whelan (UCD)

Dynamic Programming

40 45 50 55 60

Optimal Consumption Rules At Various Stages

@ This model is deterministic, so given starting assets, there is a unique optimal
solution for what plays out over time.

@ However, we have calculated optimal consumption rules for each point in time
dependent on how much assets on hand equal at the start of the period and it
is worth looking at these rules.

@ In the final year of life, optimal strategy is to consumer whatever assets are
left. We also see a number of other lines corresponding to a few years before
the end of life when the propensity to consume from assets is also very high.

@ However, for most of life, the MPC from assets is fairly low. This suggests
that “infinite horizon" models may do ok at describing consumption patterns
for most of life but will not do a good job in the final years.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 41 /57

Optimal Consumption Rules at Various Ages

0.7

0.6 -

Karl Whelan (UCD) Dynamic Programming

Part IV

A Life-Cycle Model of Consumption

Karl Whelan (UCD)

Dynamic Programming

Specifying the Model

@ A realistic model of life-cycle consumption needs to account for two important
patterns: People earn labour income and then retire.

@ Our life-cycle model has the following features:

» People spend their first 19 years as children and in education.

» The problem thus starts at age 20 and we will keep T = 60, representing
a 60-year life span from the time of starting work.

> People start their working life with no assets (no inherited wealth).

» They then work for 45 years, with initial labour income of 1, which then
grows at 2 percent per year until they retire.

> People retire at age 65 (thus earning no more labour income) and then
live until they are 80 with only their assets to fund consumption.

> In the first version of the model, people can borrow as much as they
want. In the second version, they are not allowed to have a negative net
asset position.

@ Obviously, the idea that people know exactly what their lifetime income is
going to be is not an accurate assumption. And knowing exactly when you
will die (and not having to worry about medical expenses) are also issues. We
will discuss integrating uncertainty into this kind of model next week.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 44 /57

Running the Model with Patient and Impatient Households

The charts on the next few pages run our model for various values of 5.

We set r =1/0.97 — 1, so that the consumers with 8 = 0.97 want to
perfectly smooth their consumption because 5 (1 + r) = 1.

We start by letting people borrow as much as they want early in life and then
paying off these debts later.

This was implemented by allowing people to borrow a lot at the start of life
and then (in a linear fashion) tightening the borrowing constraint so they
needed to end life with no borrowings. By setting this initial amount of
possible borrowing high enough, we can get a set of simulations in which the
borrowing constraint doesn’t limit behaviour early in life.

Patient households (e.g. 8 = 0.99) never borrow and build up a big stock of
assets to sustain growing consumption over life.

“Random walk” households (3 = 0.97) borrow initially and then run up a
smaller stock of assets to allow constant consumption over life.

Patient households (e.g. 8 = 0.95) borrow a lot early in life and build up a
small stock of assets and have falling consumption over life.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 45 /57

Consumption

Life Cycle Model: Consumption Paths with Negative Net
Assets Allowed (r = 1/0.97 — 1)

n and Incom
T

Karl Whelan (UCD)

Dynamic Programming

Assets

Life Cycle Model: Asset Paths with Negative Net Assets
Allowed (r =1/0.97 — 1)

Karl Whelan (UCD)

Dynamic Programming

Ruling out Negative Net Assets

@ What happens if banks are unwilling to let people have negative assets?

@ But banks are generally reluctant to let people have negative net assets based
on a promise that future labour income will pay off the loans.

@ The charts on the following pages describe what happens when we impose the
constraint that assets have to be positive.

@ Note that if we interpret assets as really meaning net wealth (assets minus
liabilities) then we are not ruling out borrowing. People who buy a house with
a 100 percent mortgage have unchanged levels of net assets because the asset
they have acquired (the house) offsets the loan they have taken on.

@ The most patient households (those with 8 = 0.99 or above) are not affected
by this constraint because they never planned to borrow anyway.

@ But everyone else goes through a period when they are “liquidity constrained”.
They would like to borrow to finance higher consumption but they can't.
They choose to consume all their labour income and don't accumulate assets.

@ The most impatient households in this model are liquidity constrained until
their mid-40s and only start saving for retirement then.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 48 /57

Life Cycle Model: Consumption Paths
Assets Not Allowed (r = 1/0.97 — 1)

Consumption

with Negative Net

n and Incom
T

20

Karl Whelan (UCD)

Dynamic Programming

25

Assets
20—

Life Cycle Model: Asset Paths with Negative Net Assets
Not Allowed (r =1/0.97 — 1)

10

20

50
Karl Whelan (UCD)

Dynamic Programming

Implications for Fiscal Policy

@ This model has strong implications for the effects of fiscal stimulus via tax
cuts or rebates or “stimulus cheques”.

@ The model predicts that some people—those who are young and particularly
the impatient young—uwill spend all of their stimulus.

@ But everyone else will treat it more like “permanent income” consumers, only
consuming that part of it that raises their long-run income.

@ So the response to fiscal stimulus is likely to be larger than it would be if
everyone was a permanent income consumer.

@ It is also likely to depend on factors such as demographics and the willingness
of the financial system to allow people to carry debt.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 51 /57

Uncertain Time of Death

@ It is easy to adapt our model to allow uncertainty about the time of death.
@ We can adapt our Bellman equation to take the form
MAX | cl=7

Ve (A) = {G} 1 — 5 + B(1 = 0¢) Ver1 (Aetr)

where §; is an age-varying probability of death, measuring the probability of
people who reach age t but not age t + 1. So people consider next period but
place a lower weight on it because there is a chance it never happens.

@ | have adapted our programme to incorporate 2019 data on probabilities of
death from the US Social Security Administration. | have imposed a
maximum feasible age of 120.

@ The next few charts show the probability of death that has been used and
repeats the life-cycle paths for consumption and assets, now understood as
the consumption and assets of those who live to the various ages.

@ Relative to our model with a fixed life length of 80 years, consumption earlier
in life is lower and saving from income starts earlier because of the possibility
that people will need assets to sustain them beyond 80 years of age.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 52 /57

2019 US Data on Probability of Death by Age

Probability of Death
T

Karl Whelan (UCD) Dynamic Programming

Life Cycle Model: Consumption Paths with Uncertain
Time of Death (r =1/0.97 — 1)

Consumption
T

n and Income
T

I
100

Karl Whelan (UCD)

Dynamic Programming

Life Cycle Model: Asset Paths with Uncertain Time of

Death (r =1/0.97 — 1)

Assets

0
20

Karl Whelan (UCD)

Dynamic Programming

100

Bequests

@ The final chart shows the amount of assets accumulated at each age by those
who have died that period.

@ These will presumably be left as bequests.

@ Note that the model generates large amounts of bequests even though we
haven't given our agents a bequest motive, i.e. they get utility from knowing
they are leaving money to heirs.

@ This matches data showing bequests being a major source of wealth
acquisition.

@ Another adaptation we could make to the model is to add uncertain
out-of-pocket health expenses that rise in probability the longer you live.

@ De Nardi, French and Jones's paper “Why Do the Elderly Save? The Role of
Medical Expenses” (2010, Journal of Political Economy) uses dynamic
programming to provide realistic modelling of mortality rates and the
potential costs of health expenses and explore the role of the Medicaid system
in impacting asset accumulation.

Karl Whelan (UCD) Dynamic Programming Autumn 2023 56 /57

Life Cycle Model: Bequests by Age (r =1/0.97 — 1)

Bequests
T T

0.6
0.5
0.4
03|
0.2
0.1

o L

20 30 40 50 60 70 80 90 100 110

Karl Whelan (UCD) Dynamic Programming

	Introduction to Dynamic Programming
	An Example: Having Your Cake and Eating It
	Numerical Solution Methods
	A Life-Cycle Model of Consumption

