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Part I

Introduction to Phase Diagrams
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Illustrating Dynamics in a Two Variable Model
While there are various tricks that work for solving specific types of nonlinear
differential equations, there is no general solution technique that works.

And linearisation around a particular point is not much help if we want to
understand the global dynamics of the model: Often the dynamics of a model
around one point can be quite different to its dynamics around a different
point.

Phase diagrams are a popular technique that allow us to see the joint
dynamics of two variables. Many models in economics can be boiled down to
two variables so this method is widely used.

Let’s start with a very general example

ẋ = g (x , y) ∂g
∂x < 0 ∂g

∂y < 0

ẏ = f (x , y) ∂f
∂x < 0 ∂f

∂y > 0

where g and f are continuous differentiable functions.
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Deriving the Dynamics of x and y

Now let’s think about the set of points that correspond to ẋ = 0. Start off at
one such point. Since g is a decreasing function of both x and y , then if we
increase x , then for g (x , y) to remain equal to zero, we would have to
decrease y . This means the set of points corresponding to ẋ = 0 is
characterised as a downward-sloping line in y − x space. We have drawn this
here as a straight line but in general this won’t be the case.

Away from the ẋ = 0 line, what are the dynamics? Well the points above the
line feature higher values of y than the points on the line. Since ∂g

∂y < 0, this
means that ẋ < 0, meaning x is declining. Phase diagrams mark this with an
arrow pointing left. Points under the line correspond to x increasing so we
draw an arrow to the right.

Similar logic tells you that the ẏ = 0 line is upward-sloping and that, at points
above it, y is increasing while it is decreasing at points below the ẏ = 0 line.

This divides up the (x , y) space into four quadrants and we know in which
directions that x and y are going in each of these quadrants.

This, my friends, is a phase diagram
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The dx
dt = 0 Locus
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Dynamics of x
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The dy
dt = 0 Locus and Dynamics of y
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Full System Dynamics
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Convergence to Equilibrium?

The equilibrium of this model is where the ẏ = 0 line intersects the ẋ = 0 line.

Will the model generally tend to head for this equilibrium no matter where the
system starts?

We can see from the previous picture that, in this case, it appears the answer
is no. In the quadrants directly above and below the equilibrium, the
dynamics take the variables away from equilibrium.

We would need more detail to figure out if there is any chance of the model
converging to equilibrium. However, many macroeconomic models have the
feature that the variables must take values along a unique so-called saddle
path that propels the variables steadily towards the equilibrium value.

Note that g and f are continuous functions so the dynamics cannot be
“jumpy”. So, for example, if we go from a part of the phase space where y is
increasing and then pass over into a part where it is decreasing, then the rate
at which it is increasing must gradually approach zero from a positive
direction and then gradually move away from zero in a negative direction.

To illustrate, I have drawn an example of what a saddle path might look like
for this model.
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A Convergent Saddle Path
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Part II

Example: The SIR Epidemiology Model
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Introducing the SIR Model

This is the classic model of epidemiology which has been the basis for many
analyses of the COVID19 pandemic.

People can be in one of three states:

I St is the number of people that are susceptible to being infected.
I It is the number of people that are currently infected.
I Rt is the number of people that have recovered.

The model’s dynamics are as follows

Ṡt = −βItSt
İt = βItSt − γIt
Rt = 1− St − It

The discussion of the model is mainly borrowed from lecture notes by Ben
Moll of LSE. So are the Matlab programmes generating the graphs.
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Assumptions of the Basic SIR Model
1 The number of people getting the infection is proportional to both St and It .

This effectively assumes people are randomly meeting and some fraction of
the meetings between susceptible and infected result in new infections. The
parameter β determines the rate of new infections: It depends on both the
intensity with which people meet others and the infectiousness of the disease.

2 Everyone either has the infection now, has had it in the past and recovered
(and is now immune) or is susceptible to getting it now or in the future. There
are no people who are immune to the infection at the start of the outbreak.

3 People recover from being infected at rate γ. There is no distinction between
being infected and being infectious (e.g. a period during which the person can
pass on the disease but does not feel infected or a period in which the person
feels sick but is no longer infectious.)

4 We have normalised the total population to one.

We will look at loosening the first and second assumptions after we have worked
through the dynamics of the basic model.
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A Phase Diagram for the SIR Model
We are going to make a phase diagram in S , I space. Once we know what
these variables are doing, we automatically get Rt .

To make a phase diagram, we need to know the conditions under which our
two variables are increasing or decreasing.

Let’s re-express the dynamics of St and It in growth rate terms:

Ṡt
St

= −βIt

İt
It

= βSt − γ

St is always decreasing with the pace depending positively on the number of
infected.

It is unchanged when St = S∗ = γ
β .

Since the growth rate of It depends positively on St , we know the number of
infections is growing if St > S∗ and is falling if St < S∗.

That’s enough information to make the arrows for a phase diagram.
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Ben Moll’s Phase Diagram Arrows
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Path Starting from 100% Susceptible Looks Like This
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Some (Sort of Confusing) Terminology

Notice from Ben Moll’s graph that he labels S∗ = γ
β (equal to 0.4 in his

implementation) as “the herd immunity threshold” level of susceptibility.

A few comments on “herd immunity” in this model.

I In many models, variables labelled with a star represent the long-run
levels that the model ends up at. There is nothing in this model that
makes the herd immunity level of susceptibility be the long-run outcome.
You can see from Ben Moll’s chart that when you start at S0 = 1, the
level of susceptibility way over-shoots S∗ to end up at a much lower level.

I S∗ is only important because once you reach that point, you know that
the number of infections will steadily decrease. How long it takes
infections to go to zero depends on how many infections you have by the
time you arrive at the herd immunity threshold.

Epidemiologists often refer to β
γ (the inverse of S∗) as “the basic

reproductive number” and sometimes call this R-zero. I’ll denote this as R0

to avoid confusion with our existing R variable. For each infected person, R0

measures the ratio of people being newly infected to people recovering. If
R0 = 2.5, then you only have a falling infection rate when you reach St = 0.4.
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An Analytical Solution

One useful result is that the derivative of log of a variable gives its
instantaneous growth rate. In other words,

d logXt

dt
=

d logXt

dX

dXt

dt
=

Ẋt

Xt

Looking back at the model, we have

Ṡt
St

= −βIt

Ṙt = −Ṡt = İt = γIt

This means that
dRt

dt
= Ṙt = −γ

β

Ṡt
St

= −R0
d log St

dt

Integrating from 0 to t, we get∫ t

0

dRk

dk
dk = −R0

∫ t

0

d log Sk
dk

dk =⇒Rt − R0 = −R0

(
log

(
St
S0

))
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An Analytical Solution

We have derived

Rt − R0 = −R0

(
log

(
St
S0

))
This can be re-written as

1− It − St − R0 = −R0

(
log

(
St
S0

))
Or also as

It = 1− R0 − St +R0

(
log

(
St
S0

))
This gives the path for infections at all time. Note the peak of infections
occurs when St = S∗ = 1

R0
so the peak level is given by

Imax
t = 1− R0 −

1

R0
−R0 (log (R0S0))

One can also drive an implicit formula for the amount of people still
susceptible after the epidemic is over, i.e. when It = 0.
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Starting With Lower Numbers Susceptible

Ben Moll’s graph assumed the epidemic starts with almost no infections I0 ≈ 0
and almost everyone susceptible so at the start, we have S0 ≈ 1,R0 ≈ 0.

We can vary these assumptions to get a greater sense of the model’s dynamics.

For example, we could continue to assume that everyone starts out either
susceptible or infected, but raise the number initially infected to various levels.

The program SIR.m has code to make phase diagrams for the model using
simple finite-difference approximations to the derivatives. It varies the initial
amount infected from almost none to just over 0.6. As with Ben Moll’s
programme, herd immunity is set at 0.4.

The code is on the next page and the phase diagram is on the next page.

It shows, unsurprisingly, that the more people that are initially infected, the
higher will be the eventual number infected. That said, despite large
differences in the number infected (ranging from I0 = 0.001 to I0 = 0.601),
the differences in final number infected are fairly modest.

The programme uses Matlab’s quiver command which draws arrows showing
the direction the system is going. The larger the arrows, the faster the speed.
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SIR.m
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Varying the Initial Amount Infected
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What If Not Everyone Is Susceptible?

In the program SIR.m, a lower level of initial susceptibility came from a large
number of people being infected at the start of the epidemic.

A more likely reason to start out with lower susceptibility is that some people
are immune to catching the infection, either because they have had it before
or been vaccinated or simply aren’t genetically susceptible.

We can model this situation by having a higher value of R0, placing those who
are immune in the “recovered” category but still starting with a minimal
amount of infected people. This is done in the programme SIRImmune.m

The phase diagram this produces are shown on the next page. It illustrates
the role of herd immunity.

The lower the initial number of susceptible people, the weaker the epidemic is,
both in terms of peak infections and eventual numbers who get infected.

If you can get to herd immunity (in this case St = 0.4) and you have very low
infection numbers, then this outbreak will quickly disappear. But if you arrive
at the herd immunity threshold and there are still lots of people infected, then
having reached the level doesn’t help much – you are still going to end up
with most of initially susceptible people getting the infection.
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Allowing Some People To Not Be Susceptible

Karl Whelan (UCD) Phase Diagrams Autumn 2023 24 / 53



Modelling Lockdown
Now let’s introduce a lockdown policy into the model.

Recall that the parameter β depends on both the intensity with which people
meet others and the infectiousness of the disease. Governments cannot
influence the infectiousness of the disease but they can reduce the intensity
with which people meet each other using lockdowns.

The programme SIRLockdown.m takes the standard case of I0 ≈ 0 and
S0 ≈ 1 and allows a 50-day lockdown from period 25 onwards.

We simulate lockdowns for five different cases, reducing β by 20%, 40%, 60%,
80% and 100%.

The chart on the next page shows the outcomes from the five different
lockdowns: Can you guess which lockdown policy produces the best outcome
in terms of lowering the peak level of infections and the total of people to get
infected?
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50 Day Lockdowns Of Various Intensities
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Which Is the Most Effective Lockdown?

The lines are as follows

I 20 % Reduction in β: Orange line
I 40 % Reduction in β: Yellow line
I 60 % Reduction in β: Purple line
I 80 % Reduction in β: Green line
I 100 % Reduction in β: Light blue line

The most effective lockdown (in this very specific case) is a 40% reduction in
activity for 50 days (the yellow line).

The 20% reduction is not enough to stop cases rising at a fairly fast pace. On
the other hand, the more stringent reductions all fail to get below the herd
immunity level of susceptibility when lockdown is removed, leading to second
waves of various sizes.

The temporary full lockdown ends up with more infected people than all the
other lockdowns.

The graphs on the next page compare the time-paths of St , It and Rt without
any lockdown and with the 50-day 40% lockdown.
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Time Path for 50 Period 40% Reduction in Activity
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Caveats

I am not an epidemiologist. Don’t take any of this as proof that “loose
lockdowns work best” or that this is my personal opinion.

There are lots of caveats one could apply to these results:

I A strict lockdown allows time for finding better ways to treat the
infection, for building up health system capacity and for progress to be
made on finding a vaccine. This was clearly relevant for Covid-19.

I Strict lockdowns may allow time to implement a testing system that
allows governments to change the dynamics and suppress the virus after
the lockdown is over.

I The model assumes that people don’t change their behaviour in response
to learning about the infection and its progress. Endogenising behaviour
could produce different predictions.
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Part III

Example: The Economics of Easter Island
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A Malthusian Model of Population and Resources

For another example of using differential equations and phase diagrams to
answer interesting economic questions, we will discuss the model in Brander
and Taylor’s 1998 American Economic Review paper “The Simple Economics
of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use.”

The model that combines a Malthusian approach to population dynamics with
modelling changes in a renewable resource base.
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The World’s Most Remote Place
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Easter Island Statues
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Standing and Toppled Statues
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Model of Resources: Population and Harvests

The model economy has Nt people.

They sustain themselves by collecting a harvest, Ht from a renewable resource
stock denoted by St .

The model consists of three elements:

The Change in Population: This depends positively on the amount of
harvest per person and on an exogenous factor d > 0 (without a harvest,
there is a certain percentage reduction in population).

dNt

dt
= −dNt + θHt

The Harvest: The harvest reaped per person is a positive function of the size
of the resource stock.

Ht

Nt
= γSt
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Model of Resources: Stock of Resources

The final element in the model is the change in the resource stock.

We are describing a resource stock that is renewable. It doesn’t simply decline
when harvested until it is all gone.

Instead, it has its own capacity to increase. For example, stocks of fish can be
depleted but will increase naturally again if fishing is cut back.

So, our equation for the change in resources is

dSt
dt

= G (St)− Ht

The second term on the right-hand-side captures that the resource stock is
reduced by the amount that is harvested.

The first element describes the ability of the resource to grow.
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Renewal of the Stock of Resources

Brander and Taylor use a logistic function to describe how the resource stock
renews itself

G (St) = rSt (1− St)

The maximum level of resources is St = 1: At this level, there can no further
increase in St .

If St = 0 so the resource base has disappeared, then it cannot be regenerated.

For all levels in between zero and one, we can note that

G (St)

St
= r (1− St)

So the amount of natural renewal as a fraction of the stock decreases steadily
as the stock reaches its maximum value of one. If the stock gets very low, it
can grow at a fast rate if there is limited harvesting.
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Dynamics of Population

We are going to use a phase diagram to describe the joint dynamics of Nt and
St .

Inserting the equation for the harvest into the equation for the change in
population we get

dNt

dt
= −dNt + θγStNt

This equation shows us that population growth is a positive function of the
resource stock.

This means there is a particular value of the resource stock, S∗, for which
population growth is zero. When resources are higher than S∗ population
increases and when it is lower than S∗ population declines.

The value of S∗ can be calculated as

−dNt + θγS∗Nt = 0⇒ S∗ =
d

θγ
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Phase Diagram: Population Dynamics

The figure on the next slide shows how we illustrate the dynamics with a
phase diagram.

We put population on the x-axis and the stock of resources on the y -axis.

Population dynamics can then be described as follows:

1 Unchanged population corresponds to a straight line at S∗.
2 For all values of resources above S∗ population is increasing: Thus in the

area above the line, we show an arrow pointing right, meaning
population is increasing.

3 In the area below this line, there is an arrow pointing left, meaning
population is falling.
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Population Dynamics
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Resource Dynamics

Combining logistic renewal with harvest equation, resource stock dynamics are

dSt
dt

= rSt (1− St)− γNtSt

The stock of resources will be unchanged for all combinations of St and Nt

that satisfy

rSt (1− St)− γNtSt = 0⇒ Nt =
r (1− St)

γ

This means that there is downward sloping line in N − S space along each
point of which the change in resources is zero.
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Phase Diagram: Resource Dynamics

The upper point crossing the S axis corresponds to no change because S = 1
and there are no people.

As we move down the line we get points that correspond to no change in the
stock of resources because while there are progressively larger numbers of
people, the stock gets smaller and so can renew itself at a faster pace.

Growth rate of resources depends negatively on the level of the stock:

1 Every point that lies above the downward-sloping dS
dt = 0 line has a

higher level of resources than the point on line below it. So St is
declining for every point above the line and increasing for every point
below it, hence arrow pointing down.

2 In the area below this line, there is an arrow pointing up, meaning the
stock of resources is increasing.

Karl Whelan (UCD) Phase Diagrams Autumn 2023 42 / 53



Resource Dynamics
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Joint Dynamics of Population and Resources

In the next figure, we put together the four arrows drawn in the two previous
figures.

The joint dynamics of population and resources can be divided up into four
different quadrants.

We can also see that there is one point at which both population and
resources are unchanged.

We know already that the level of the resource stock at this point is S∗ = d
θγ .

The level of population associated with this point is:

N∗ =
r
(

1− d
θγ

)
γ

=
r (θγ − d)

θγ2
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Combining Population and Resource Dynamics
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Joint Dynamics of Population and Resources
This point is clearly some kind of “equilibrium” in the sense that once the
economy reaches this point, it tends to stay there.

But is the economy actually likely to end up at this point?

Yes. By calculating the slopes of the trajectories in each quadrant, Brander
and Taylor find that from any interior point (i.e. a point in which there is a
non-zero population and resource stock) the economy eventually ends up at
(N∗,S∗).

You can show that

1

Nt

dNt

dt
= θγ (St − S∗)

1

St

dSt
dt

= γ (N∗ − Nt) + r (S∗ − St)

so the dynamics of both population and the resource stock are both driven by
how far the economy is from this equilibrium point.
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Harvesting and Long-Run Population

How does more intensive harvesting (higher γ) affect the long-run equilibrium
level of population N∗?

You can show that
dN∗

dγ
=

r

γ2
(2S∗ − 1)

The right-hand side here may be greater than or less than zero.

Whether an increase in γ raises or reduces the equilibrium population depends
on the size of the equilibrium level of resources.

1 If S∗ > 0.5 then a more intensive rate of harvesting raises the population
even though it reduces the total amount of resources.

2 If S∗ < 0.5 then a more intensive rate of harvesting reduces the
population because it reduces the total amount of resources.

Easter Island devastation scenario (ending with very low resource stock) more
like the latter case.

Note I’ve simplified things here a bit. S∗ itself depends upon γ but the
calculation above doesn’t take that into account.
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Back to Easter Island

Let’s go back to Easter Island and imagine the island in its early days with a
full stock of resources and very few residents. What happens next?

For many years, the population expands and resources decline.

Then, when it moves into the bottom right quadrant, population falls and
resources keep declining.

It moves though the quadrants and ends up at equilibrium with S = S∗ and
N = N∗

Our theoretical Easter Island sees its population far overshoot its long-run
equilibrium level before collapsing below this level and then oscillating around
the long-run level and then finally settling down.
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Illustrative Dynamics Starting from Low Population and
High Resources
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Matlab Programme Output
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Dynamics Over Time
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Dynamics Over Time with Less Harvesting
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Why Doesn’t Someone Shout Stop?

In his book, Collapse, Jared Diamond discusses Easter Island and a number of
other cases in which societies saw dramatic collapses, many triggered by
long-term environmental damage.

Diamond points to a number of potential explanations for why societies can
let environmental damage occur up to the point where they trigger disasters.

I The Tragedy of the Commons: It may simply never be in anyone’s
individual interests at any point in time to prevent environmental
degradation. Need political institutions to take into account externalities
associated with self-interested behaviour.

I Failure to Anticipate: Societies may not realise exactly how much
damage they are doing to their environment or what its long-term
consequences will be.

I Failure to Perceive, Until Too Late: Diamond notes that
environmental change often occurs at such a slow pace that people fail
to notice it and plan to deal with it.

Analogies with current debate about climate change are clear.
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