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Part I

Optimal Control and the Maximum Principle
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Optimal Control Problems
Optimal control theory describes how to solve problems of the form

Max
{ut , xt}

∫ t1

t0

F (xt , ut , t) dt

subject to
ẋt = A (xt , ut , t)

We will term x the state variable and u the control variable but in this
case, time will be continuous.

We will go through a relatively informal discussion of the conditions for
optimality in these problems. Let’s start by treating it as a Lagrangian
problem where the law of motion of the state variable gives us a constraint at
each point in time. So we set up the Lagrangian as

L =

∫ t1

t0

[F (xt , ut , t) + λt (A (xt , ut , t)− ẋt)] dt

While clearly a Lagrange multiplier, in the optimal control literature λt is
often referred to as the costate variable.

To maximise this we need to know a few tricks relating to integrals.
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Two Integral Tricks

1 Leibniz Rule: If we let

I (x) =

∫ t1

t0

F (x , t) dt

then
dI

dx
=

∫ t1

t0

∂F

∂x
dt

2 Integration by Parts: This is the product rule of differentiation backwards.

d

dx
(f (x) g (x)) = f ′ (x) g (x) + f (x) g ′ (x)∫ t1

t0

d

dx
(f (x) g (x)) dx =

∫ t1

t0

f ′ (x) g (x) dx +

∫ t1

t0

f (x) g ′ (x) dx

=⇒
∫ t1

t0

f ′ (x) g (x) dx = f (t1) g (t1)− f (t0) g (t0) +

∫ t1

t0

f (x) g ′ (x) dx
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Optimal Control Problems

Our Lagrangian is

L =

∫ t1

t0

[F (xt , ut , t) + λt (A (xt , ut , t)− ẋt)] dt

Let’s use integration by parts to replace the term involving ẋt .

−
∫ t1

t0

λt ẋtdt = λt0xt0 − λt1xt1 +

∫ t1

t0

λ̇txtdt

So the Lagrangian becomes

L =

∫ t1

t0

[
F (xt , ut , t) + λtA (xt , ut , t) + λ̇txt

]
dt + λt0xt0 − λt1xt1

Now we look to maximise this with respect to xt and ut point by point. In
other words, we are looking to maximise the integral by trying the maximise
the height of the function at each point.
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Optimality Condition 1: The Control Variable

Taking derivatives of

L =

∫ t1

t0

[
F (xt , ut , t) + λtA (xt , ut , t) + λ̇txt

]
dt + λt0xt0 − λt1xt1

with respect to ut , the Leibniz rule implies that we maximise the integral by
separately maximising the function being integrated at each point in time.

This means that for all t ∈ (t0, t1), we have

∂F

∂ut
+ λt

∂A

∂ut
= 0

We can still interpret λt as a shadow value, in this case it is the value of the
state variable. So this equation states that the direct payoff of an additional
unit of the control variable ut must be exactly offset by the effect this
additional unit has in adding or subtracting to the state variable, xt .
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Optimality Condition 2: The State Variable

Taking derivatives of

L =

∫ t1

t0

[
F (xt , ut , t) + λtA (xt , ut , t) + λ̇txt

]
dt + λt0xt0 − λt1xt1

with respect to xt where t ∈ (t0, t1), we get

∂F

∂xt
+ λt

∂A

∂xt
+ λ̇t = 0

The first term defines the instantaneous payoff to having more of xt ; the
second term describes the effect of an additional unit of xt on the change in
xt ; the final term accounts for changes in the value of the state variable.

We also have
λt1 = 0

At time t1, there is no value to accumulating more of the state variable
because payoff after this period are not being counted. This is known as the
transversality condition.
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The Hamiltonian and the Maximum Principle

If we define the Hamiltonian of this problem to be

H (xt , ut , t) = F (xt , ut , t) + λtA (xt , ut , t)

Then the following set of conditions will make the path (x∗t , u
∗
t , λ
∗
t ) represent

an optimal solution:

∂H (x∗t , u
∗
t , λ
∗
t )

∂u
= 0

∂H (x∗t , u
∗
t , λ
∗
t )

∂x
= −λ̇

∂H (x∗t , u
∗
t , λ
∗
t )

∂λ
= ẋ

λt1 = 0

Together, these four conditions are known as Pontryagin’s maximum
principle.
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Exponential Discounting in Continuous Time

Most intertemporal problems in economics involve discounting future payoffs.
In discrete time is common to see this represented by a discount rate of the
form

β =
1

1 + r

Suppose interest is accumulated n times during period, with r/n earned each
sub-period and the balance compounded. Then, the discount rate would be

β =

(
1

1 + r
n

)n

Continuous time can be approximated as the limit case of the number of
sub-periods going towards infinity. It turns out however that

lim
n→∞

(
1

1 + r
n

)n

= er

So in continuous time, we use the discount rate

β = e−rt
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The Current Value Hamiltonian

In problems with discounting, the Hamiltonian is of the form

H (xt , ut , t) = e−ρtF (xt , ut , t) + λtA (xt , ut , t)

It is to redefine this via a current-value Hamiltonian, Hc = Heρt . Also define
µt = λte

ρt so that and the current value Hamiltonian is

Hc = F (xt , ut , t) + µtA (xt , ut , t)

Then we can derive that

λt = µte
−ρt

=⇒ λ̇ =
d

dt

[
µte
−ρt] = µ̇e−ρt − ρµte

−ρt

We can use this condition to re-state the maximum principle conditions in
terms of the current value Hamiltonian.
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The Maximum Principle for the Current Value Hamiltonian
Given the current-value Hamiltonian

Hc = F (xt , ut , t) + µtA (xt , ut , t)

Then the following set of conditions will make the path (x∗t , u
∗
t , µ
∗
t ) represent

an optimal solution:

∂Hc (x∗t , u
∗
t , µ
∗
t )

∂u
= 0

∂Hc (x∗t , u
∗
t , µ
∗
t )

∂x
= −µ̇+ ρµ

∂Hc (x∗t , u
∗
t , µ
∗
t )

∂µ
= ẋ

µt1e
−ρt1 = 0⇒ µt1 = 0

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 11 / 48



Maximum Principle Technicalities

Infinite Horizon: Lots of problems in macroeconomics set t1 to infinity. You
might imagine the transversality condition generalises to limt→∞ λt = 0 or
limt→∞ e−ρtµt = 0 in the case of the current value Hamiltonian. In fact this
doesn’t always work. There are cleverly constructed counter-examples. But
for the models we will look at this condition will suffice.

Second-Order Conditions: Differentiating and setting equal to zero can
yield a maximum, a minimum or a saddle point in xt , ut space. We will have
obtained a maximum if the Hamiltonian is concave in (xt , ut). In fact a
weaker condition exists.

Arrow’s Theorem: H (xt , u
∗
t , t) is a concave function in xt then the

conditions in the maximum principle are sufficient to ensure a global
maximum.

So if F and A are concave in xt then we have a global maximum. This
condition holds in most economics applications of the maximum principle.
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Part II

The Ramsey Model
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The Ramsey Model

As an application of the maximum principle, we will analyse the classic model
of optimal consumption and capital known as the Ramsey model in honour of
his 1928 article “A Mathematical Theory of Saving.” Further developed in the
1960s by Cass and Koopmans so the model has lots of names.

A social planner is seeking to maximise∫ ∞
0

U (Ct) e
−ρtdt

subject to
K̇t = f (Kt)− Ct − δKt

where f ′ (Kt) > 0, f ′′ (Kt) < 0 and it is assumed that K0 takes some given
value.
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Optimality Conditions

The current value Hamiltonian for this problem is

Hc = U (Ct) + µt (f (Kt)− Ct − δKt)

The first-order conditions are

∂Hc

∂C
= U ′ (Ct)− µt = 0

∂Hc

∂K
= µt f

′ (Kt)− µtδ = −µ̇t + ρµt

∂Hc

∂µ
= f (Kt)− Ct − δKt = K̇t

lim
t→∞

µte
−ρt = 0

We can convert the first three equations into two differential equations in Ct

and Kt starting by noting that

µ̇t

µt
= ρ+ δ − f ′ (Kt)
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Two Differential Equations

We can use the fact that µt = U ′ (Ct) to get

µ̇t = U ′′ (Ct) Ċt

and
µ̇t

µt
=

U ′′ (Ct) Ċt

U ′ (Ct)

So
U ′′ (Ct) Ċt

U ′ (Ct)
= ρ+ δ − f ′ (Kt)

This means we have a system of two nonlinear differential equations
describing the dynamics of consumption and capital.

Ċt = −
(
U ′ (Ct)

U ′′ (Ct)

)
(f ′ (Kt)− ρ− δ)

K̇t = f (Kt)− Ct − δKt
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CRRA Preferences and Consumption Dynamics

We need to specify a utility function to get a specific solution. A popular
option is Constant Relative Risk Aversion (CRRA) utility.

U (Ct) =
C 1−σ
t

1− σ

This implies a system of differential equations of the form:

Ċt

Ct
=

f ′ (Kt)− ρ− δ
σ

K̇t = f (Kt)− Ct − δKt

Now we can start to figure out how to represent this system as a phase
diagram. Start with consumption. Ċt = 0 implies

f ′ (Kt) = ρ+ δ

Because f ′ is a monotonically declining function, this means Ċt = 0 is
associated with a specific K∗ such that f ′ (K∗) = ρ+ δ. For Kt < K∗

consumption is increasing. For Kt > K∗ consumption is declining.
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The dC
dt = 0 Locus

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 18 / 48



Capital Dynamics

The dynamics of the capital stock are given by

K̇t = f (Kt)− Ct − δKt

K̇t = 0 implies
Ct = f (Kt)− δKt

The slope of this curve is given by

dCt

dKt
= f ′ (Kt)− δ

Because f ′ (Kt) > 0 and f ′′ (Kt) < 0, the slope of curve will start out positive
and then become negative. In other words, the K̇t = 0 starts out rising as Kt

increases, reaches a peak and then declines.

For each value of Kt , every point above this curve corresponds to higher
consumption. Because K̇t depends negatively on consumption, capital is
declining above the K̇t = 0 line and increasing below it.
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The dK
dt = 0 Locus
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The Full System

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 21 / 48



The Golden Rule and the Equilibrium Capital Stock

Define the golden rule level of capital, K g , as that level of capital that
facilitates the highest possible equilibrium level of consumption.

We know that along the curve K̇t = 0, we have

Ct = f (Kt)− δKt

Taking the derivative of this with respect to Kt

dCt

dKt
= f ′ (Kt)− δ ⇒ f ′ (K g )− δ

Our equilibrium (C∗,K∗) however, features

f ′ (K∗) = ρ+ δ

Because there f ′′, this higher marginal productivity of capital implies the
equilibrium level of capital in this model is lower than the golden rule level.
This also implies a lower level of consumption than the golden rule level.

This occurs because of impatience due to discounting. We will discuss the
economics behind this in a bit.
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Linearised Local Dynamics Around the Equilibrium

Let’s write our system as

Ċt = Ct

[
f ′ (Kt)− ρ− δ

σ

]
= g1 (Ct ,Kt)

K̇t = f (Kt)− Ct − δKt = g2 (Ct ,Kt)

We approximate these dynamics with a first-order Taylor series approximation
around the point (C∗,K∗).

g1 (Ct ,Kt) = g1 (C∗,K∗) +
∂g1 (C∗,K∗)

∂C
(Ct − C∗) +

∂g1 (C∗,K∗)

∂K
(Kt − K∗)

g2 (Ct ,Kt) = g2 (C∗,K∗) +
∂g2 (C∗,K∗)

∂C
(Ct − C∗) +

∂g2 (C∗,K∗)

∂K
(Kt − K∗)
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Linearised Local Dynamics: Consumption
Start with consumption.

g1 (Ct ,Kt) = g1 (C∗,K∗) +
∂g1 (C∗,K∗)

∂C
(Ct − C∗) +

∂g1 (C∗,K∗)

∂K
(Kt − K∗)

Calculate the coefficients as follows:

g1 (C∗,K∗) = 0

∂g1 (C∗,K∗)

∂Ct
=

f ′ (K∗)− ρ− δ
σ

= 0

∂g1 (C∗,K∗)

∂Kt
= σ−1C∗f ′′ (K∗)

Writing
β = −σ−1C∗f ′′ (K∗)

and noting β must be positive, we have derived the local dynamics of
consumption as

Ċt = −β (Kt − K∗)
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Linearised Local Dynamics: Capital

Now calculate the linearised dynamics of the capital stock in a similar fashion:

g2 (Ct ,Kt) = g2 (C∗,K∗) +
∂g2 (C∗,K∗)

∂C
(Ct − C∗) +

∂g2 (C∗,K∗)

∂K
(Kt − K∗)

and the coefficients are given by

g2 (C∗,K∗) = 0

∂g2 (C∗,K∗)

∂Ct
= −1

∂g2 (C∗,K∗)

∂Kt
= f ′ (K∗)− δ = ρ

For the last step remember that f ′ (K∗) = ρ+ δ.

The local linearised dynamics for capital are thus

K̇t = − (Ct − C∗) + ρ (Kt − K∗)
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The Full Linearised System
The full linearised system is(

Ċt

K̇t

)
=

(
0 −β
−1 ρ

)(
Ct − C∗

Kt − K∗

)
We calculate its eigenvalues as∣∣∣∣ −λ −β

−1 −ρ− λ

∣∣∣∣ = 0

Which implies
(−λ) (ρ− λ)− β = λ2 − ρλ− β = 0

which has roots
λ1,2 = ρ±

√
ρ2 + 4β

This gives two real roots, one positive, one negative. Ruling out the positive
root because it generates explosive values, there exists a saddle path along
which both consumption and capital move steadily towards (C∗,K∗). Given
any initial value of the capital stock, the economy will move towards
equilibrium if the social planner chooses the level of consumption required to
place the economy on this saddle path.
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Stability of the Equilibrium?

This model has an equilibrium level of consumption and capital (C∗,K∗) but
it is immediately clear from the phase diagram that it is not globally stable.

We have established there is a local convergent saddle path around (C∗,K∗)
but the logic of the phase diagram tells us that there is indeed a unique global
saddle path i.e. for any value of the capital stock, there is a unique value of
consumption that sets the economy on the path to equilibrium.

Can we be sure the economy will always be either on the saddle path or in
equilibrium? Yes.

For all the other points, you can show the capital stock heads for either zero
or infinity. It turns out, however, that we can rule out both possibilities as not
being consistent with the optimality conditions.
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Ruling Out Non-Stable Equilibrium

We can rule out both Kt → 0 and Kt →∞ as follows.

1 Kt → 0: Capital heads towards zero in the top-left-hand side of the phase
diagram and the model obeys the first-order conditions with consumption
rising. However, once we hit Kt = 0, there can be no production and thus no
consumption. This jump downwards in consumption is not consistent with the
optimality conditions.

2 Kt →∞: In this case, we have f ′ (Kt)→ 0. Thus, we have

µ̇t

µt
= ρ+ δ + f ′ (Kt)→ ρ+ δ

So the growth rate of µ tends towards ρ+ δ. This means that

lim
n→∞

µte
−ρt 6= 0

which violates the transversality condition.

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 28 / 48



Saddle Path Convergence in the Ramsey Model
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Other People Make Fancier Ramsey Model Phase Diagram
Graphs
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Why Not Choose Higher Consumption and Capital?

We have shown that the equilibrium level of consumption and capital,
(C∗,K∗) is below the maximum sustainable levels associated with the golden
rule. In a sense, this outcome seems suboptimal, so why is this the outcome?

Consider the following scenario: Starting out from (C∗,K∗), there is a change
in preferences and suddenly there is no more time discounting (ρ = 0).

What happens? We know the final equilibrium outcome involves higher
consumption and capital. But the shorter run dynamics involve temporarily
lower levels of consumption.

Why is this? The saddle path approaches the equilibrium from below:
Building up the extra capital required to deliver the golden rule level of
consumption requires extra saving prior to reaching that point, so the
dynamics of approaching an equilibrium at K g starting out from our original
K∗ require consumption to jump down onto the new saddle path, which lies
below the previous saddle path.

Once our agents have discounting, they don’t choose this path to higher
capital and consumption because they are not willing to put up with the
temporarily lower consumption that you get on the saddle path along the way.
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With Discounting

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 32 / 48



After a Shock to Set the Discount Rate to Zero
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A Productivity Shock

You can also do other thought experiments changing other parameters. In
each case, what happens is there is a jump in consumption to place the model
on its new equilibrium saddle path.

For example, we can write the production function as f (Kt) = Ah (Kt) and
consider a jump in the technology variable A.

While a positive productivity shock definitely leads to higher consumption in
the end, in the short run it could either lead to an increase or a decrease in
consumption, depending on preferences and technology and the size of the
productivity shock.

See the picture on the next few pages borrowed from Olivier Blanchard’s MIT
lecture notes.

Karl Whelan (UCD) Dynamic Optimisation in Continuous Time Autumn 2023 34 / 48



A Positive Productivity Shock Might Decrease
Consumption At First
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Or Increase Consumption At First
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Ramsey Model: Lots of Other Extensions
There are lots of ways to extend the Ramsey model to incorporate other
aspects of the economy.

1 Introducing exogenous technological change.
2 Separate modelling of households and firms, including potential for

imperfect competition.
3 Open economy modelling including dynamics of exchange rates and

current accounts.
4 Introducing demographics: Births and deaths instead of infinitely-lived

agents.
5 Fiscal policy: Introducing governments and taxes.
6 Adding investment adjustment costs
7 Adding exhaustible or renewable resources.

Lots of these extensions can be found in the classic Blanchard and Fischer
textbook.
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Part III

Numerically Calculating the Saddle Path
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Simulating the Ramsey Model

We have already worked on simulating models on the computer using Matlab.

When simulating the Ramsey model, there is a complication. We don’t want
to simulate all the non-equilibrium exploding or collapsing paths. We want to
simulate the convergent saddle path, starting from some initial point in time
and moving forward.

For each starting value of capital, there is a unique level of consumption that
puts the model on the saddle path. Every other value seems the model
explode or collapse. But we don’t have any analytical calculations for what
these unique set of consumption points are.

One method is to just analyse the linearised model and set the initial
condition for consumption so the coefficient on the unstable eigenvalue is zero
and what is left is the convergent saddle path.

Instead, we’re going to use a solution method that will work for the
non-linearised method. This method is known as a “shooting algorithm” but
that’s just a fancy term for “‘guessing the initial value of consumption until
you get it right.”
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A Shooting Algorithm
Suppose we start out with a low value of initial capital. What happens next?

Go back and look at our phase diagram for the Ramsey model on page 29.
I If consumption ever goes above C∗, capital ends up going to zero.
I If capital ever goes above K∗, consumption ends up going to zero.

Our algorithm is based on picking a first-period value for consumption (given
our low first-period level of capital), simulating the model (using the Euler
finite-difference method) and then updating this initial guess as follows:

I If consumption ever goes above C∗ on the first guess, change the guess
for the first-period value of consumption to be half the initial guess, then
change subsequent guesses to be an average of the previous two guesses.

I If capital ever goes above K∗ on the first guess, change the guess for the
first-period value of consumption to be a weighted average of the initial
guess and C∗, then change subsequent guesses to be an average of the
previous two guesses.

I Keep going until, after a while, your initial guess delivers a path where
Ct converges to C∗ after a while.

A similar approach can be used to figure out convergence paths starting from
a high level of capital. It’s brute force but it works.
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Programme Set Up
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Calculating a Convergence Path from Below K ∗
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Repeating the Process When Starting Above K ∗
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Initial Guess with Consumption Collapsing
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Initial Guess with Consumption Exploding
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Stop When An Initial Guess Gives Convergence to C ∗
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The Full Saddle Path
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Using quiver to Make a Phase Diagram
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