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Stochastic Processes

Having look at the dynamics of deterministic models, we will now discuss
stochastic models, i.e. models in which variables cannot be perfectly
forecasted due to the presence of random elements.

We will start by focusing on Markov chains. These are a simple kind of
discrete-time stochastic process that have a finite range of possible values.
We will use Markov chains later in the module when we discuss stochastic
dynamic programming.

After that, we will discuss continuously-valued discrete-time stochastic
processes, usually just called time series.

Modelling time series is a central part of modern macroeconomics. This isn’t
an econometrics course but we are, by necessity, going to have to cover some
econometric issues that affect empirical research in macroeconomics.

In this set of lecture notes, we will discuss nonstationary time series,
specifically series with upward trends, covering some of the practical issues
involved in modelling these series.

Our next few lectures will focus on modelling stationary time series.
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Part I

Markov Chains

Karl Whelan (UCD) Markov Chains & Non-Stationary Processes Autumn 2023 3 / 50



Markov Processes

A first-order Markov process yt is a discrete-time process with the property
that conditional on the current value of the process, future realisations are
independent of yt−1 and other past values.

An example of a Markov process is an autoregressive process of order 1
(i.e. an AR(1) process).

yt = α + ρyt−1 + εt

where εt is independent identically distributed process with mean zero.

In macroeconomics, we often use Markov processes with discrete supports i.e.
the process can only ever take one of the N values d1, ...., dN . This is known
as a Markov chain.

Markov chains are defined by their transition probabilities.

pij = Prob [yt+1 = dj | yt = di ]

A Markov chain’s transition matrix P is a matrix of probabilities in which the
ith row contains the probabilities for all possible outcomes next period given
yt = di .
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Simulating Markov Chains

Markov chains are easy to simulate in Matlab using the commands dtmc and
simulate.

For instance, see below for code that simulates 100 periods of a Markov
process with three possible values (1, 2, 3) and a transition matrix given by

P =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3



Note that Matlab uses a random number generator to pick the initial state.
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Markov Chain Approximation to the AR(1) Model

Markov chains can be used to approximate the behaviour of Markov processes
with continuous supports, i.e. processes that can, in theory, take any value.

We are going to use a Matlab programme called rouwen.m to approximate an
AR(1) process using a Markov chain.

This programme implements a method introduced by Geert Rouwenhorst in a
1995 paper.

There are a number of different methods that get used to do this
approximation but it appears that Rouwenhorst’s method is the best. You can
check out what exactly the method is if you want—I have made a paper on
this available—but we don’t have time to stop and cover it here.

Among other features, Rouwenhurst’s method produces series that match the
mean, variance and first-order autocorrelation statistics of the AR(1) series
that you are trying to mimic.

The graph on the next page shows a sample run from approximating an AR(1)
series with ρ = 0.9 using a 21-state Markov chain. Code for this is available
on Brightspace.
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Sample Simulation of a 21-State AR(1) Approximation
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Changing Distributions Over Time

Now let’s consider a case where there are N possible states for a variable and
we have a large population of agents, each of whom are allocated to one of
these states.

Let’s denote the initial distribution of people across those states by a column
vector of share values

θ0 =


θ0,1
θ0,2
.

θ0,N


where these shares sum to one.

Now assume that the population is sufficiently large that the Law of Large
Numbers applies to transitions. For example, if the transition matrix says
there is a probability 0.5 that agents in state i remain in that state and 50
percent change that they switch to state j , then the outcome is exactly that.

This means that distribution changes over time according to

θ1 = P ′θ0 ⇒ θN = (P ′)
N
θ0
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Example: Two-State Process
Consider a two-state Markov chain with transition matrix

P =

(
1− p p
q 1− q

)
If the initial distribution across states is given by

θ0 =

(
θ0,1
θ0,2

)
Then the distribution at time 1 is determined by

θ1 =

(
θ1,1
θ1,2

)
=

(
(1− p) θ0,1 + qθ0,2
pθ0,1 + (1− q) θ0,2

)
=

(
1− p q
p 1− q

)(
θ0,1
θ0,2

)
= P ′θ0

And the distribution at time T is given by θN = (P ′)
N
θ0.
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Stationary Distributions

If we let the Markov chain run for a long-time with a large population, will the
distribution of outcomes settle down to specific distribution? If it does, we
call this the stationary distribution (also sometimes called the invariant
distribution).

If it exists, the stationary distribution, θ∗ satisfies

θ∗ = P ′θ∗ ⇒ (I − P ′) θ∗ = 0

This means that θ∗ is an eigenvector of P ′ corresponding to an eigenvalue of
one. Since transposing doesn’t change eigenvalues or eigenvectors, it means
θ∗ is an eigenvector of P corresponding to an eigenvalue of one.

The fact that the rows of P all sum to one guarantees that there is at least
one eigenvalue. But there may be multiple unit eigenvalues and thus multiple
possible stationary equilibria.

If, however, all of the elements of the P matrix are between zero and one,
that is a sufficient condition for the process to converge to a unique stationary
equilibrium.
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Back to the Two-State Process

Consider again the two-state Markov chain with transition matrix

P =

 1− p p

q 1− q


We can calculate the stationary distribution as the values θ∗1 and θ∗2 that solve[(

1 0
0 1

)
−
(

1− p q
p 1− q

)](
θ∗1
θ∗2

)
=

(
0
0

)
This can be solved to give (

θ∗1
θ∗2

)
=

( q
p+q
p

p+q

)
Note that, for example, if q = 0, meaning that once you are in State 2 you
stay there, then in the end nobody ends up in State 1. State 2 is what is
known as an absorbing state.
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Calculating Stationary Distributions with Matlab

The code below uses Matlab’s eig function to calculate the stationary
distribution of a 3× 3 matrix.

Using eig, you can calculate the eigenvalues and also a matrix containing
eigenvectors, ordered in the same order as the eigenvalues.

You tell Matlab to find where in the ordering the unit eigenvalue is and then
find the corresponding eigenvector. Once you’ve found it, you need to
normalise its entries to sum to one.

The graph on the next page shows the stationary distribution for the 21-state
approximation to an AR(1) model disussed earlier. When using the
Rouwenhurst method, I recommend using an odd number of states because
this allows the mean value to be the middle point on the grid and gives a
single-peaked stationary distribution.
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Stationary Distribution of the 21-State AR(1)
Approximation
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Some Additional Points About Stationary Distributions

A few slides back, we showed a simulation of the 21-state Markov chain and
pointed out that Matlab picked a random state to start with.

The fact that it starts out in this particular state, as opposed to one of the
others, means this run of the model isn’t necessarily representative.

So if you want to get a “representative” dataset for this process it is best to
“burn in” the process for a while before using it for simulation purposes, e.g.
discard the first 100 periods.

Also, while we have viewed the stationary distribution as a cross-sectional
concept—this is where the cross-sectional distribution will settle down over
time—it could also be viewed as the distribution of outcomes over time for a
single agent who follows this Markov chain. If they lived for a very long time,
this graph would be the histogram showing how much time they spent in each
of the states.
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Part II

Brief Introduction to Time Series
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Some Types of Time Series Models
Macroeconomic data isn’t usually constrained so that it has to take up a finite
set of values, so we usually model them as taking a continuous range of values.

Because current data often depend on what has happened in the past, time
series process such as the AR(1) process

yt = α + ρyt−1 + εt

More generally, macroeconomists will often use AR(k) models of the form

yt = α + ρ1yt−1 + ρ2yt−2 + ...+ ρkyt−k + εt

which depend on outcomes k periods ago.

Next time we will look at AR models with multiple variables, where outcomes
for all the variables depend on past values of all the other variables, a
so-called Vector Autoregression model.

Sometimes macroeconomists Autoregressive Moving Average processes. An
ARMA(k, p) process features k lags of the dependent variable and p lags of a
random shock.

yt = α + εt +
k∑

i=1

ρiyt−i +

p∑
i=1

φiεt−i
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Stationarity and Random Walks

It is easy to show that AR(1) processes such as

yt = α + ρyt−1 + εt

where −1 < ρ < 1 will tend to move up or around a fixed average value of
α

1−ρ and all samples of successive values of a fixed size will have the same
expected variance. Processes of this type are termed covariance stationary.

However, if ρ = 1, then these conditions no longer hold.

Suppose α = 0, then we have the classic random walk model.

yt = yt−1 + εt

which implies the changes in yt are completely unpredictable.

This series will not settle down fluctuating around a specific mean
value—indeed it could end up taking on any value. And variances for samples
of successive values of fixed size will increase as the size of the sample
increases.

This is a covariance non-stationary process, more usually just termed a
non-stationary process.
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Generalisations
In macroeconomics, it is more common to see a random walk with drift

yt = α + yt−1 + εt

which tends to drift upwards over time but each period there will be random
shocks that see the series change by either more than or less than α.

This series is also nonstationary: It doesn’t have a constant mean over time
and uncertainty over future mean values grow as you look further into the
future. Again, variances for samples of successive values of fixed size will
increase as the size of the sample increases.

We can generalise the point to AR(k) process

yt = α + εt +
k∑

i=1

ρiyt−i

These are stationary if the sum of lag coefficients
∑k

i=1 ρi is less than one in
absolute value.

The case in which
∑k

i=1 ρi = 1 provides a generalised form of the random
walk with drift. Series of this sort are called unit root series because 1 is a
root of the polynomial 1− ρ1x − ρ2x2 − ....− ρkxk .
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Trends in Macroeconomic Series
Due to technological progress, most macroeconomic variables—GDP,
consumption etc—tend to grow over time.

A simple example of a growing economy is one in which GDP experiences
constant exponential growth, growing at rate β at all time.

Yt = eα+βt

Taking logs, we can write this as

yt = log (Yt) = α + βt

(Note that macroeconomists tend to use lower-case letters when denoting the
log of a series)

Of course, no economy ever grows at the exact same rate each period. A
more realistic model is

yt = log (Yt) = α + βt + ut

where ut is a zero mean series. For example ut could follow an AR(1) process:

ut = ρut−1 + εt

where εt is a zero mean iid “white noise” series.
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Deterministic and Stochastic Trends
The model

yt = log (Yt) = α + βt + ut

features a deterministic trend.

While it may move above and below the trend value of α + βt, we will always
expect it to return to this trend value. It means we can predict future values
with relatively high confidence.

An alternative is the stochastic trend where the series is a unit root with
drift, such as the random walk with drift below:

yt = α + yt−1 + ut

where ut is a zero mean series.

On average, the series grows at rate α. However, when the series increases at
a rate faster than α, this isn’t offset by future negative realisations that “bring
it back to trend”. Future values of stochastic trend variables are harder to
forecast because they of the absence of this reversion to trend feature.
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Part III

Spurious Regression
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A Problem When Using Non-Stationary Series

Most of econometrics is concerned with assessing relationships between
variables: Usually, we are asking the question “Does x have an effect on y?”

But when two different unrelated nonstationary series are regressed on each
other, the result is usually a so-called spurious regression, in which the OLS
estimates and t statistics indicate that a relationship exists when, in reality,
there is no such relationship.

The modern literature on this topic dates from a famous paper by Granger
and Newbold from 1974. However, the nature of the problem was known at
least as far back as 1926.

In 1926, Georges Udny Yule wrote a paper in the Journal of the Royal
Statistical Society called “Why Do We Sometimes get Nonsense Correlations
between Time-Series?”
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Yule (1926) on Nonsense Correlations
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George Udny Yule’s Chart from 1926
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Yule’s Discussion of His Chart
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Spurious Regressions: Unit Roots with Drifts
When discussing spurious regressions, econometric textbooks tend to focus on
what happens when we take two random walks without drift (i.e.
yt = yt−1 + εt with no constant term) and regress them on each other.

In applied econometric work, however, unit root without drift processes are
not very common. Generally, we work with series that tend to be stationary or
else with series that have a clear upward trend and which may be unit root
processes with drift (e.g. stochastic trends of the form yt = α + yt−1 + εt .)

While explanations of how the spurious regression problem works for
non-drifting unit root processes are quite complex, the spurious regression
problem is far more relevant in the case where the processes have drift. It also
turns out that the problem is easier to explain in this case.

A property of drifting unit root processes that we will use is the following

yt = α + yt−1 + εt

= α + α + yt−2 + εt + εt−1

= αt +
t∑

k=1

εk + y0
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Useful Results About Infinite Sums
Establishing properties about regressions involving drifting unit root series will
require figuring out properties of sums of the form

∑T
t=1 t and

∑T
t=1 t

2.

Note that 1 + 2 + 3 = 6 = (3)(4)
2 and 1 + 2 + 3 + 4 = 10 = (4)(5)

2 . The general
rule is

T∑
t=1

t =
T (T + 1)

2
=

1

2

(
T 2 + T

)
For sums of squares, we have

T∑
t=1

t2 =
T (T + 1) (2T + 1)

6
=

1

6

(
2T 3 + 3T 2 + T

)
This means that as T →∞

1

T 2

T∑
t=1

t → 1

2

1

T 3

T∑
t=1

t2 → 1

3
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Regressions Featuring Random Walks with Drifts

Consider regressing yt on the completely unrelated series xt where

yt = αy + yt−1 + εyt

xt = αx + xt−1 + εxt

The OLS estimator is

β̂ =

∑T
t=1 xtyt∑T
t=1 x

2
t

=

∑T
t=1

(
αx t +

∑t
k=1 ε

x
k + x0

) (
αy t +

∑t
k=1 ε

y
k + y0

)∑T
t=1

(
αx t +

∑t
k=1 ε

x
k + x0

)2
As T gets large, the terms in t2 will dominate all other terms. Re-writing this
as

β̂ =
1
T 3

∑T
t=1

(
αx t +

∑t
k=1 ε

x
k + x0

) (
αy t +

∑t
k=1 ε

y
k + y0

)
1
T 3

∑T
t=1

(
αx t +

∑t
k=1 ε

x
k + x0

)2
then all of the terms that are not of the form 1

T 3

∑T
t=1 t

2 will go to zero.
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Spurious Regression Results
This means that as T gets large, β̂ tends to converge towards

αy

αx

In other words, the OLS estimator will tend towards the ratio of the two drift
terms. In addition, the t statistics will generally indicate that there is a highly
statistically significant relationship.

The next pages show histograms for β̂’s and t-stats from a Matlab
programme with 10,000 Monte Carlo simulations regressing yt on xt where

yt = 1 + yt−1 + εyt

xt = 0.5 + xt−1 + εxt

where the error terms are i.i.d. normally distributed errors with standard
deviations equal to 1. They show OLS coefficients averaging 2 and highly
significant t-stats.

Note that the key terms driving these results were the time trends. These
results also apply to “trend stationary” series like yt = αt + ρyt−1 + εt , so the
problem is not specific to the unit root series.

Similar results apply to regressions featuring unit roots without drifts but
deriving these results analytically is beyond the scope of this module.
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Histogram of β from Regressions of Unrelated Unit Roots
With Drift (T = 500)
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Histogram of t Statistics from Regressions of Unrelated
Unit Roots With Drift (T = 500)
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Matlab Programme Simulating Spurious Regressions
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Part IV

Cointegration
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First-Differencing as a Solution?
So what do we do with nonstationary series when we want to understand
causal relationships?

Well suppose you have a series like yt = α + yt−1 + εt? One option comes
from the fact that if you calculate the first difference of this series
∆yt = α + εt , it becomes a stationary series.

We say a series is integrated of order k (denoted I (k)) if it has to be
differenced k times before it becomes stationary. Sometimes, one can can
come across examples involving I (2) series, but generally the time series in
practical applications are either I (1) or I (0).

So one option if we want to check if there is a relationship between two I(1)
series is to use the first-differences instead. For example, if we are testing
whether there is a relationship of the form

yt = γ + βxt + εt

we could first-difference both sides and instead run the following regression

∆yt = β∆xt + ut

where ut = εt − εt−1.
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Cointegration

The spurious regression problem can be stated as the fact that unrelated I (1)
series regressed upon each other tend to appear to be related according to the
usual OLS diagnostics.

Examining whether there is a relationship in first-differences is one way to
check if the relationship is spurious or real.

However, what if there really is a relationship between the levels? For
example, what if yt and xt are both I (1) series but there existed a coefficient
β such that yt − βxt ∼ I (0).

In this case, there is a common trend across the series and we say that the
series yt and xt are cointegrated.

When this is the true relationship, it turns out that OLS estimates of β are
consistent and using the information about the levels of the variables is very
helpful for getting a good estimate of the relationship.
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Consistency of OLS Under Cointegration
Consider again the case where xt is a unit root with drift

xt = αx + xt−1 + εxt

but in this case the variable yt is cointegrated with xt so that

yt = βxt + ut

where ut is mean-zero I (0) series.

We can calculate the properties of the OLS estimator as follows:

β̂ = β +

∑T
t=1 xtut∑t
t=1 x

2
t

= β +

∑T
t=1

(
αx t +

∑t
k=1 ε

x
k + x0

)
ut∑T

t=1

(
αx t +

∑t
k=1 ε

x
k + x0

)2
The terms in T 2 will dominate as T →∞ so that the denominator of the last
term will grow faster than the numerator. This means that β̂ converges in
probability to β. (In fact, it does so at a faster pace than if your regression
involves I(0) variables)
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The Error-Correction Representation
Consider two I (1) series, yt and xt . We would expect their first-differences to
have stationary representations

∆yt = αy + γy1 ∆yt−1 + ...+ γyk ∆yt−k + εyt

∆xt = αx + γx1∆xt−1 + ...+ γxk ∆xt−k + εxt

Now suppose that yt and xt are cointegrated. This means there exists a value
β such that yt − βxt ∼ I (0). But if the processes are as described above, then
there is nothing about the behaviour of either series that would see the two
series tending to move together. So, additional terms are required to describe
these processes.

Specifically, we need additional error-correction terms of the form yt − βxt ,
to get a representation of the form

∆yt = αy + γy1 ∆yt−1 + ...+ γyk ∆yt−k + θy (yt − βxt) + εyt (1)

∆xt = αx + γx1∆xt−1 + ...+ γxk ∆xt−k + θx (yt − βxt) + εxt (2)

where we expect to have θy ≤ 0 and θx ≥ 0. In other words, when yt rises
above its long-run relationship with xt it tends to fall back and/or xt tends to
increase.
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The Vector Error-Correction Representation

When there are only two series, any potential cointegrating vector is unique
up to multiplication by a scalar (e.g. we could say yt − βxt ∼ I (0) or that
xt − β−1yt ∼ I (0)).

However, when there are n different variables, then there may be multiple
cointegrating vectors, e.g. for Yt = (y1t , y2t , y3t , y4t), one could have
y1t − γ1y3t ∼ I (0) and y2t − γ1y4t ∼ I (0).

Consider the general case, in which there are r cointegrating relationships
among n variables. Specifically, consider the case in which the n × 1 vector of
I (1) series Yt has the property that there exists an r × n matrix A such that
the r series defined by Zt = AYt are all I (0). In this case, there exists an n× r
matrix B such that Yt is described by a Vector Error Correction Mechanism
representation

∆Yt = γx1∆Yt−1 + ...+ γxk ∆Yt−k + α + BZt−1 + εt (3)

= γx1∆Yt−1 + ...+ γxk ∆Yt−k + α + BAYt−1 + εt (4)

This result is part of what is known as the Granger Representation Theorem.

Karl Whelan (UCD) Markov Chains & Non-Stationary Processes Autumn 2023 38 / 50



Testing for Cointegration
Suppose we have two I (1) series, yt and xt . How do we test whether they are
cointegrated or whether the relationship between them is spurious? Tests are
based on the idea that if there is no underlying relationship than the OLS
residuals, ût = yt − β̂xt will also have a unit root.

One might be tempted to regress ût on ût−1and do a t-test of whether the
coefficient equals one. However, the OLS procedure produces residuals that
may appear stationary, even when no cointegrating relationship exists.

This means that special critical values must be applied when testing for
cointegration. These critical values differ depending on whether the
underlying yt and xt series have drifts and on whether the potential
cointegrating regression includes a constant.

Critical values are generally calculated via Monte Carlo simulations that
regress two unrelated I (1) series on its other and collect statistics on the
distribution of t-statistics. Test procedures reject the null of no cointegration
if the t-statistics is above specified percentiles of this distribution.

When testing for r different cointegrating vectors among n variables, testing
procedures involve estimating a VAR process and assess whether the relevant
VECM is the best fit for the data.
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Part V

Detrending
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Trends and Cycles
Macroeconomists sometimes decide to break series into a “non-stationary”
long-run trend and a “stationary” cyclical component.

“Business cycle analysis” relates to this modelling and explaining the cyclical
components of the major macroeconomic variables.

Fine in theory, but how is this done in practice?

Simplest method: Log-linear trend

I Estimated from regression

log(Yt) = yt = α + gt + εt

I Trend component α + gt.
I Zero-mean stationary cyclical component εt .
I Log-difference ∆yt (equivalent to growth rate) has two components:

Constant trend growth g and the change in cyclical component ∆εt .

The next few pages show output from a Matlab programme plotting the log of
real GDP and the trend and cycle based on fitting a linear trend to this series.
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Log of US Real GDP, 1947:Q1 to 2022:Q2
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Log of US Real GDP with a Linear Trend, 1947:Q1 to
2022:Q2
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Detrended Log Real US GDP From a Linear Trend Model,
1947:Q1 to 2022:Q2
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Variations in Trend Growth
Two problems with a simple deterministic log-linear trend:

I It assumes there is a constant trend growth rate for all times. But there
are no fixed constant in economics and underlying growth rates for the
economy may improve or decline depending on various factors.

I It rules out stochastic trend behaviour, where the economy grows at an
average rate but positive shocks are not subsequently reversed.

A more realistic model should be one in which we accept that growth rate of
the trend probably varies a bit over time leaving a cycle that moves up and
down over time around this various trend.

Macroeconomists have developed many different kinds of what are known as
filtering methods, which take a time series and split it into its variable growth
rate trend component and its cyclical component.

This is a challenging task and ultimately relies on judgement.
I You don’t want the time series to depart by huge amounts from its

so-called trend (as happened above with the log-linear trend for real
GDP).

I But if the trend series tracks too close to the actual time series, it loses
its meaning as a trend.
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The Hodrick-Prescott Filter

The most commonly used filtering method in macroeconomics was developed
by Hodrick and Prescott (1981). It is available as a command in Matlab.

They suggested choosing the time-varying trend Y ∗t so as to minimize

N∑
t=1

[
(Yt − Y ∗t )2 + λ

(
∆Y ∗t −∆Y ∗t−1

)]
This method tries to minimize the sum of squared deviations between output
and its trend (Yt − Y ∗t )2 but also contains a term that emphasises minimizing
the change in the trend growth rate (λ

(
∆Y ∗t −∆Y ∗t−1

)
).

How do we choose λ and thus weight the goodness-of-fit of the trend versus
smoothness of the trend?

λ = 1600 is the standard value used in business cycle detrending with
quarterly data. We will discuss this choice in more detail in a few weeks.

Some DSGE modellers apply a HP filter to their data and then analyse only
the cyclical components.
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HP-Filtered Cycles Correspond Well to NBER Recessions
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Investment Cycles Are Bigger than Consumption Cycles
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Matlab Programme For the Previous Charts
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Hamilton on the Hodrick-Prescott Filter
Despite its popularity, not everyone thinks the Hodrick-Prescott filter. In his 2018
REStat paper, “Why You Should Never Use the Hodrick-Prescott Filter” James
Hamilton makes a number of specific criticisms.

If series are generated by unit roots with trends, then the filtered cycles are
spurious and spurious cyclical relationships can emerge between the filtered
series.

The HP trend and cycle have an artificial ability to “predict” the future
because they are by construction a function of future as well past realizations.

You could try to fix this by using only using a one-sided filter, so the filtered
variable at time t depends only on observation seen up to that point. But
end-point values for these filters tend to be very sensitive to the final
observations.

The HP filter unnecessarily imposes a value for λ, usually λ = 1600 but it is
not necessary to do this. You can use “latent variable” econometric methods
to estimate λ and the values it returns are far lower than λ = 1600.
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