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Part I

Introducing Vector Autoregressions
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Impulse Response Functions
Let’s go back to the AR(1) model.

yt = ρyt−1 + εt

Suppose an AR(1) series starts out at zero. Then there is a unit shock, εt = 1
and then all shocks are zero afterwards.

In period t, we have yt = 1, in period t + 1 we have yt+1 = ρ, in period t + n
we have yt+n = ρn and so on.

The shock fades away gradually and how fast depends on the size of ρ. The
time path of y after this hypothetical shock is known as the Impulse
Response Function. Graphs of IRFs are commonly used to illustrate dynamic
properties of macro models.

This specific formulation—there is a shock and then nothing happens
again—is obviously not realistic. However, the AR(1) model is a linear model,
so instead you can think of this as the difference between the paths followed
from time t onwards when shocks are (εt + 1, εt+1, εt+2, .....) instead of (εt ,
εt+1, εt+2, .....), i.e. the incremental effect in all future periods of a unit shock
today. In other words, the impulse response function shows the partial
derivatives over time with respect to a shock that happens today.
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Volatility: Shocks and Propagation Mechanisms

Consider the AR(1) model
yt = ρyt−1 + εt

Suppose the variance of εt is σ2
ε .

The long run variance of yt is the same as the long-run variance of yt−1 and
(remembering that εt is independent of yt−1) this is given by

σ2
y = ρ2σ2

y + σ2
ε

Simplifies to σ2
y =

σ2
ε

1−ρ2

The variance of output depends positively on both shock variance σ2
ε and also

on the persistence parameter ρ.

So the volatility of the series is partly due to size of shocks but also due to the
strength of the propagation mechanism.
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Vector Autoregressions
Vector Autoregressions (VARs) are autoregressive models with multiple
variables. Popularised by Nobel-prize winner, Chris Sims, in his 1980 paper
“Macroeconomics and Reality”, they are used a lot in modern macro.

The simplest possible VAR features two variables and one lag:

y1t = a11y1,t−1 + a12y2,t−1 + e1t

y2t = a21y1,t−1 + a22y2,t−1 + e2t

As with the simple system of difference equations we looked at before, the
most compact way to express a VAR system is to use matrices. Defining

Yt =

(
y1t

y2t

)
A =

(
a11 a12

a21 a22

)
et =

(
e1t

e2t

)
This system can be written as

Yt = AYt−1 + et
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Generality of the First-Order Matrix Formulation: I

The model we’ve been looking at may seem like a small subset of all possible
VARs because it doesn’t have a constant term and only has lagged values
from one period ago.

However, one can add a third variable here which takes the constant value 1
each period. The equation for the constant term will just state that it equals
its own lagged values. So this formulation actually incorporates models with
constant terms.

We would also expect most equations in a VAR to have more than one lag.
Surely this makes things much more complicated?

Not really. It turns out, the first-order matrix formulation can represent VARs
with longer lags.

Consider the two-lag system

y1t = a11y1,t−1 + a12y1,t−2 + a13y2,t−1 + a14y2,t−2 + e1t

y2t = a21y1,t−1 + a22y1,t−2 + a23y2,t−1 + a24y2,t−2 + e2t
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Generality of the First-Order Matrix Formulation: II

Now define the vector

Zt =


y1t

y1,t−1

y2t

y2,t−1


This system can be represented in matrix form as

Zt = AZt−1 + et

where

A =


a11 a12 a13 a14

1 0 0 0
a21 a22 a23 a24

0 0 1 0

 et =


e1t

0
e2t

0


This is sometimes called the “companion form” matrix formulation.
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Stationarity and Cointegration

I plan to focus on VARs with stationary I (0) variables but we should briefly
discuss the issues surrounding including I (1) variables.

We could use multiple I (1) variables but it would be likely that many of the
estimated coefficients would be spurious.

One solution is to only enter variables into a VAR in stationary format. So, for
example, we would use the log-difference of GDP rather than the log of GDP.

A weakness to this approach would be if there are non-spurious co-integrating
relationships, then information about the levels of these variables is useful
because deviations from cointegrating relationships tend to be closed over
time. So we should be using the Vector Error Correction Mechanism
(VECM) formulation.

Consider the following example:[
∆y1t

∆y2t

]
=

[
1 −2
.25 −.5

] [
y1,t−1

y2,t−1

]
+

[
0.9 0.3
−0.2 0.8

] [
∆y1,t−1

∆y2,t−1

]
+

[
ε1t

ε2t

]
In this case, there is a cointegrating relationship such that y1,t − 2y2,t ∼ I (0).
A simple VAR specified in first-differences would be mis-specified.
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VECMs as a General Format

Consider a VAR with n variables of the form:

xt = Φ1xt−1 + . . .+ Φpxt−p + εt

We can use the fact that xt−2 = xt−1 − ∆xt−1, xt−3 = xt−1 − ∆xt−1 − ∆xt−2

and so on, to re-write this VAR into error-correction form as

∆xt = Πxt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

How this VAR behaves depends on the Π matrix.

Before discussing this, let me introduce a piece of terminology. The rank of a
matrix is the maximal number of linearly independent columns.
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VECMs: Three Cases

We can characterise a general VECM model as having one of three formats:

1 Π = 0: There is no cointegration. Taking differences of the variables
produces a stationary VAR.

2 Π has full rank: This means that we can unwind the substitutions that
put the VAR into VECM form and go back to having a stationary VAR
in levels.

3 Π has rank k where 0 < k < n: This means there are k linear
independent columns in Π. The x ’s are cointegrated and there are there
are k distinct linear combinations that are stationary. This means that
x ’s depend on n− k unit root series. It is sometimes said there are n− k
common stochastic trends

To figure out which case is the appropriate one when doing VECM modelling
with multiple possible I (1) series, you need to carry out formal statistical tests
on the properties of Π.

These tests were pioneered by Soren Johansen in the early 1990s. We will not
cover them in this module. See Chapter 20 of the Hamilton time series
textbook for details.
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Vector Moving Average (VMA) Representation
VARs express variables as function of what happened yesterday and today’s
shocks.

But what happened yesterday depended on yesterday’s shocks and on what
happened the day before.

This VMA representation is obtained as follows

Yt = et + AYt−1

= et + A (et−1 + AYt−2)

= et + Aet−1 + A2 (et−2 + AYt−3)

= et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

This makes clear how today’s values for the series are the cumulation of the
effects of all the shocks from the past.

It is also useful for deriving predictions about the properties of VARs.

As with our systems of difference equations, whether VARs are explosive or
not depends on whether any of the eigenvalues of A are greater than one.
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Historical Decomposition
One task that VARs are commonly used for is to provide a historical
decomposition illustrating how various shocks combined to determine the
historical data.

Suppose, for example, there are two shocks so that

et =

(
e1t

e2t

)
and we denote

e1
t =

(
e1t

0

)
e2
t =

(
0
e2t

)
Then, given some initial data Y0 we can divide up the historical data into
“what would have happened if there were only type 1 shocks” (Y 1

t ) and
“what would have happened if there were only type 2 shocks” (Y 2

t ) and the
two series will sum to give the historical data where

Y i
t = e it + Ae it−1 + A2e it−2 + A3e it−3 + ......+ AtY0
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Impulse Response Functions for VARs

Suppose there is an initial shock defined as

e0 =

(
1
0

)
and then all error terms are zero afterwards, i.e. et = 0 for t > 0.

Recall VMA representation

Yt = et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

This tells us that the response after n periods is An

(
1
0

)
So IRFs for VARs are directly analagous to the IRFs for AR(1) models that we
looked at before.
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Impulse Response Function Error Bands

Impulse response functions depend on the coefficients A of a VAR process.

In reality, we don’t know A so we need to use econometrics methods to
estimate the coefficients.

Almost all VAR studies use OLS to estimate the coefficients, though as we will
discuss next lecture, these estimates are likely subject to small sample biases.

Whichever estimation method is used, for an given set of estimated
coefficients Â, there is sampling uncertainty associated with the implied IRFs.

For this reason, VAR studies don’t just report the point estimates of IRFs but
also “error bands” which are upper and lower confidence intervals for the
estimates.

If zero is in the confidence interval for a particular time period since the shock,
then we cannot reject the hypothesis that the IRF is zero for that response.
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Bootstrapping Standard Errors for IRFs
Analytical results can be derived to obtain asymptotic (i.e. large sample)
distributions for impulse response functions. Unfortunately, these distributions
are not very accurate representations of the actual distributions obtained in
finite samples of the size used in most empirical work.

IRF standard error bands are now usually calculated using bootstrap methods.

In practice, this is done as follows:

1 Estimate the VAR via OLS and save the errors ε̂t .
2 Randomly sample from these errors to create, for example, 10,000

simulated data series Z∗t = ÂZ∗t−1 + ε∗t .
3 Estimate a VAR model on the simulated data and save the 10,000

different IRFs associated with these estimates.
4 Calculate quantiles of the simulated IRFs, e.g. of the 10,000 estimates of

the effect in period 2 on variable i of shock j .
5 Use the n-th and (100 − n)-th quantiles of the simulated IRFs as

confidence intervals.
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Example of a Chart With IRF Error Bands

Response of Hours Worked to Technology Shock
Lines Above and Below are 10 and 90 Percentile Error Bands

0 5 10 15 20 25 30 35
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Karl Whelan (UCD) Vector Autoregressions Autumn 2023 16 / 47



Using a VAR to Forecast

VARs are often used for forecasting.

Supppose we observe our vector of variables Yt . What’s our forecast for Yt+1?

The model for next period is

Yt+1 = AYt + et+1

Because Etet+1 = 0, an unbiased forecast at time t is AYt . In other words,
EtYt+1 = AYt .

The same reasoning tells us that A2Yt is an unbiased forecast of Yt+2 and
A3Yt is an unbiased forecast of Yt+3 and so on.

So once a VAR is estimated and organised to be in this form, it is very easy to
construct forecasts.
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Forecast Error Variance Decomposition
Sometimes VAR modellers report a “forecast error variance decomposition”
for various forecast horizons. These decompositions show the fraction of
expected error variance that is determined by different shocks.

Denoting the forecast of Yt+s at the time t as Ŷt+s|t , the error is given by

Yt+s − Ŷt+s|t = et+s + Aet+s−1 + A2et+s−2 + ....+ As−1et+1

The mean-squared errors of this forecast is given by

MSE
(
Yt+s − Ŷt+s|t

)
= E

[(
Yt+s − Ŷt+s|t

)(
Yt+s − Ŷt+s|t

)′]
= Ω + AΩA′ + A2Ω

(
A2
)′

+ ...+ As−1Ω
(
As−1

)′
where

Ω = E (ete
′
t)

In general, this will contain covariance terms so you cannot additively assign
the expected error variance to each variable. However, in the case where the
shocks are orthogonal, then Ω will be a diagonal matrix and there will be an
additive formula so that each variable’s contribution adds up to give the MSE.
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Part II

Structural VARs
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Interpreting Shocks and Impulse Responses

The system we’ve been looking at is usually called a reduced-form VAR
model.

It is a purely econometric model, without any theoretical element.

How should we interpret it? One interpretation is that e1t is a shock that
affects only y1t on impact and e2t is a shock that affects only y2t on impact.

For instance, one can use the IRFs generated from an inflation-output VAR to
calculate the dynamic effects of “a shock to inflation” and “a shock to
output”.

But other interpretations are available.

For instance, one might imagine that the true shocks generating inflation and
output are an “aggregate supply” shock and an “aggregate demand” shock
and that both of these shocks have a direct effect on both inflation and
output.

How would we identify these “structural” shocks and their impulse responses?
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The Multiplicity of Shocks and IRFs

Suppose reduced-form and structural shocks are related by

e1t = c11ε1t + c12ε2t

e2t = c21ε1t + c22ε2t

Can write this in matrix form as

et = Cεt

These two VMA representations describe the data equally well:

Yt = et + Aet−1 + A2et−2 + A3et−3 + ......+ Ate0

= Cεt + ACεt−1 + A2Cεt−2 + A3Cεt−3 + ......+ AtCε0

Can interpret the model as one with shocks et and IRFs given by An.

Or as a model with structural shocks εt and IRFs are given by AnC .

And we could do this for any C : We just don’t know the structural shocks.
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Contemporaneous Interactions: I

Another way to see how reduced-form shocks can be different from structural
shocks is if there are contemporaneous interactions between variables, which
is likely.

Consider the following model:

y1t = a12y2t + b11y1,t−1 + b12y2,t−1 + ε1t

y2t = a21y1t + b21y1,t−1 + b22y2,t−1 + ε2t

Can be written in matrix form as

AYt = BYt−1 + εt

where

A =

(
1 −a12

−a21 1

)
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Contemporaneous Interactions: II

Now if we estimate the “reduced-form” VAR model

Yt = DYt−1 + et

Then the reduced-form shocks and coefficients are

D = A−1B

et = A−1εt

Again, the following two decompositions both describe the data equally well

Yt = et + Det−1 + D2et−2 + D3et−3 + ......

= A−1εt + DA−1εt−1 + D2A−1εt−2 + ......+ DtA−1ε0

For the structural model, the impulse responses to the structural shocks from
n periods are given by DnA−1.

Again, this is true for any arbitrary A matrix.
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Why Care?

There is no problem with forecasting with reduced-form VARs: Once you
know the reduced-form shocks and how they have affected today’s value of
the variables, you can use the reduced-form coefficients to forecast.

The problem comes when you start asking “what if” questions? For example,
“what happens if there is a shock to the first variable in the VAR?”

In practice, the error series in reduced-form VARs are usually correlated with
each other. So are you asking “What happens when there is a shock to the
first variable only?” or are you asking “What usually happens when there is a
shock to the first variable given that this is usually associated with a
corresponding shock to the second variable?”

Most likely, the really interesting questions about the structure of the
economy relate to the impact of different types of shocks that are
uncorrelated with each other.

A structural identification that explains how the reduced-form shocks are
actually combinations of uncorrelated structural shocks is far more likely to
give clear and interesting answers.
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Structural VARs: A General Formulation

In its general formulation, the structural VAR is

AYt = BYt−1 + Cεt

The model is fully described by the following parameters:

1 n2 parameters in A
2 n2 parameters in B
3 n2 parameters in C
4

n(n+1)
2 parameters in Σ, which describes the pattern of variances in

covariances underlying the shock terms.

Adding all these together, we see that the most general form of the structural

VAR is a model with 3n2 + n(n+1)
2 parameters.
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Identification of Structural VARs: The General Problem
Estimating the reduced-form VAR

Yt = DYt−1 + et

gives us information on n2 + n(n+1)
2 parameters: The coefficients in D and the

estimated covariance matrix of the reduced-form errors.

To obtain information about structural shocks, we thus need to impose 2n2 a
priori theoretical restrictions on our structural VAR.

This will leave us with n2 + n(n+1)
2 known reduced-form parameters and

n2 + n(n+1)
2 structural parameters that we want to know.

This can be expressed as n2 + n(n+1)
2 equations in n2 + n(n+1)

2 unknowns, so
we can get a unique solution.

Example: Asserting that the reduced-form VAR is the structural model is the
same as imposing the 2n2 a priori restrictions that A = C = I .
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Recursive SVARs

SVARs generally identify their shocks as coming from distinct independent
sources and thus assume that they are uncorrelated.

The error series in reduced-form VARs are usually correlated with each other.
One way to view these correlations is that the reduced-form errors are
combinations of a set of statistically independent structural errors.

The most popular SVAR method is the recursive identification method.

This method (used in the original Sims paper) uses simple regression
techniques to construct a set of uncorrelated structural shocks directly from
the reduced-form shocks.

This method sets A = I and constructs a C matrix so that the structural
shocks will be uncorrelated.
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The Cholesky Decomposition

Start with a reduced-form VAR with three variables and errors e1t , e2t , e3t .

Take one of the variables and assert that this is the first structural shock,
ε1t = e1t .

Then run the following two OLS regressions involving the reduced-form shocks

e2t = c21e1t + ε2t

e3t = c31e1t + c32e2t + ε3t

This gives us a matrix equation Get = εt .

Inverting G gives us C so that et = Cεt . Identification done.

Remember that error terms in OLS equations are uncorrelated with the
right-hand-side variables in the regressions.

Note now that, by construction, the εt shocks constructed in this way are
uncorrelated with each other.
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Interpreting the Cholesky Decomposition

The method posits a sort of “causal chain” of shocks.

The first shock affects all of the variables at time t. The second only affects
two of them at time t, and the last shock only affects the last variable at time
t.

The reasoning usually relies on arguments such as “certain variables are sticky
and don’t respond immediately to some shocks.” We will discuss examples
later.

A serious drawback: The causal ordering is not unique. Any one of the VARs
variables can be listed first, and any one can be listed last.

This means there are n! = (1)(2)(3)....(n) possible recursive orderings.

Which one you like will depend on your own prior thinking about causation.
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Another Way to Do Recursive VARs

The idea of certain shocks having effects on only some variables at time t can
be re-stated as some variables only having effects on some variables at time t.

In our 3 equation example this method sets C = I and directly estimates the
A and B matrices using OLS:

y1t = b11y1,t−1 + b12y2,t−1 + b13y3,t−1 + ε1t

y2t = b21y1,t−1 + b22y2,t−1 + b23y3,t−1 − a21y1t + ε2t

y3t = b31y1,t−1 + b32y2,t−1 + b33y3,t−1 − a31y1t − a32y2t + ε3t

See how the first shock affects all the variables while the last shock only
affects the last variable.

This method delivers shocks and impulse responses that are identical to the
Cholesky decomposition.

This shows that different combinations of A,B and C can deliver the same
structural model.

Karl Whelan (UCD) Vector Autoregressions Autumn 2023 30 / 47



Part III

Example: The Impact of Oil Prices
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Killian on Oil Shocks
Lutz Killian (2009): Not All Oil Price Shocks are Alike: Disentangling
Demand and Supply Shocks in the Crude Oil Market. American Economic
Review and Christiane Baumeister and Lutz Killian (2016): Forty Years of Oil
Price Fluctuations: Why the Price of Oil May Still Surprise Us, Journal of
Economic Perspectives.

Oil shocks—large run-ups and subsequent declines in the price of
oil—regularly receive a lot of attention.

Many recessions have been preceded by an increase in the price of oil. Why
exactly this has occurred is not obvious: Oil usage is actually a relatively small
input compared to GDP.

Previous empirical work has generally asked the question “what are the effects
of an oil price shock?”

Killian asks “what is an oil price shock and are there different kinds of oil
price shocks?”

He uses VAR analysis to distinguish between shocks to oil prices due to global
demand, shocks due to oil supply, and shocks due to speculation in the oil
price market. Let’s see how he does it.
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The Price of Oil
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Killian’s Model

Three variable monthly VAR in the growth rate of oil production, real global
economic activity, and the real price of oil: zt = (∆prodt , reat , rpot)

′.

VAR structure is

A0zt = α +
24∑
i=1

Aizt−i + εt

where εt are the structural shocks, and A0 is lower-rectangular

A0 =

 a 0 0
b c 0
d e f


Identifying assumptions:

1 Oil production does not respond within the month to world demand and
oil prices

2 World demand is affected within the month by oil production, but not by
oil prices.

3 Oil prices respond immediately to oil production and world demand.
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Interpreting the Structural Shocks

If A0 is lower-triangular, then so is A−1
0 .

Reduced-form model is

zt = A−1
0 α +

24∑
i=1

A−1
0 Aizt−i + A−1

0 εt

Reduced-form shocks et related to structural shocks as et = A−1
0 εt : e∆prod

t

ereat

erpot

 =

 a11 0 0
a21 a22 0
a31 a32 a33

 ε∆prod
t

εreat

εrpot


The oil production reduced-form shock is a structural shock; the reduced-form
economic activity shock combines the structural oil shock and the structural
activity shock; the reduced-form oil price shock combines all three structural
shocks.
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Checking the Identification Restrictions

Relative to the general model

AYt = BYt−1 + Cεt

where are our 2n2 = 18 identifying restrictions?

1 We set C = I instead assuming contemporaneous interactions between
variables: 9 restrictions.

2 Lower-diagonal assumption on A0: 3 zero restrictions.

3 Unit coefficient normalization on diagonal of A0: 3 restrictions.

4 Orthogonal structural shocks: 3 off-diagonal elements of Σ are zero.
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Decomposing the Variables

In addition to the standard impulse response analysis, Killian shows how the
real price of oil can be decomposed into components related to these three
shocks. How did he do this?

Recall the VMA representation:

Yt = εt + Aεt−1 + A2εt−2 + A3εt−3 + ......+ Atε0

One can do this calculation three times, each time with only one type of
shock “turned on” and the other set to zero. Adding these up, one will get
the realized values of Yt .

Alternatively, one can do a dynamic simulation of the model

Yt = AYt−1 + εt

in each case letting the εt represent one of the realized historical shocks with
the others set to zero.

Karl Whelan (UCD) Vector Autoregressions Autumn 2023 37 / 47



Some of Killian’s Findings

1 Despite getting a lot of attention, shocks to oil supply have limited effects on
oil prices and have been of negligible importance in driving oil prices over time.

2 Both global demand and speculative oil price shocks can have significant
effects on oil prices, but speculative oil price shocks have limited effects on
global economic activity.

3 Speculative oil-market shocks have accounted for most of the
month-to-month movements in oil prices.

4 But the steady increase in oil prices from 2000 onwards was almost solely due
to strong global demand.

5 Main Lesson: How the economy reacts to an “oil price shock” will depend on
the origins of that shock.

6 Helps to explain why the world economy survived a long period of increasing
oil prices in the 2000s without going into recession. (And when it did go into
recession, it had little to do with oil prices.)
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Impulse Responses: One Standard Deviation Shocks
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Historical Decomposition

Karl Whelan (UCD) Vector Autoregressions Autumn 2023 40 / 47



Part IV

Implementing VARs in Matlab
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Doing Empirical Work in Matlab

So far, we have only used Matlab for analysing theoretical models. However,
Matlab can also be used to do empirical analysis.

In fact, Matlab’s econometrics toolbox comes with a number of
pre-programmed routines for implementing VARs.

And there are various “toolkits” available that implement things like historical
decompositions and forecast error-variance decompositions.

Let’s get some data and implement a VAR using Matlab.

You might recall from the online “onramp” tutorial how to get data from a
spreadsheet and analyse it in Matlab.

I am going to use the FRED-MD database. It is a large dataset (135 series) of
monthly macroeconomic and financial US data maintained by Michael
McCracken of the St. Louis Fed. I have made available the descriptions of the
variables in dataset.

The code on the next page shows how to read data directly from Excel
spreadsheet (I changed the downloaded file from .csv to .xlsx), create three
variables and graph them.
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Reading in Data and Graphing It

Note that price2ret is Matlab’s rather strangely-named function for calculating
the percentage change of a series. Perhaps it started life just being applied to
stock prices.
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Matlab Data Graph
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Estimating VARs in Matlab
One way to implement the do VAR analysis in Matlab would be to estimate
each equation separately and build the A matrix and error terms from this and
then use these to do all the analysis.

It is easier, however, to use Matlab’s Econometrics Toolbox (if you haven’t
installed this, you will need to add it to your installation).

This toolbox has commands to estimate a VAR, calculate impulse response
functions and also bootstrapped standard error bands. See the next page for
an example.

The E option in the irf command tells Matlab to construct the confidence
interval using bootstrap methods.

The code is written in a very general way. You could change the number of
variables and the number of lags used easily and still use the same code for
generating the IRF graphs.

The code defaults to calculating a Cholesky decomposition based on the
ordering of the variables in the list. So the last variable is the one that reacts
to all the others.
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Matlab Code to Estimate a VAR
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Impulse Response Graphs for a Three-Variable VAR
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