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The ABCs of RBCs and DSGEs

Over the past 30 years, macroeconomists have developed a methodology for
macroeconomic modelling known as Dynamic Stochastic General Equilibrium
(DSGE) modelling.

The models include optimising firms and households, economy-wide resource
constraints and allow for (relatively simplistic) modelling of fiscal and
monetary policy.

We will discuss a well-known example of DSGE model and describe how to
use Matlab to solve and simulate these models.

The methodology for solving and simulating these models has its origins in the
methods used to solve the so-called Real Business Cycle (RBC) model. This is
a model in which only “‘real” shocks affect GDP and monetary policy has no
impact.

It’s not a very realistic model but we will describe how to solve it, so you can
see how the methods underlying DSGE models evolved.
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Part I

Introduction to the Real Business Cycle

Model

Karl Whelan (UCD) RBCs and DSGEs Autumn 2023 3 / 54



Working Through A DSGE Model

We have described methods for solving and simulating linear models with lags,
leads and rational expectations.

Now it is time to go through a particular model to see how these methods get
combined with economic theory.

Specifically, we will work through a version of the Real Business Cycle (RBC)
model—introduced in a famous 1982 paper by Finn Kydland and Edward
Prescott—is the original DSGE model.1

We will set out a basic RBC model and discuss how the model’s first-order
conditions can be turned into a system of linear difference equations of the
form we know how to solve.

This will require explaining another new technique, known as log-linearization.

While many now question the specific assumptions underlying the early RBC
models, the methodology has endured.

1“Time to Build and Aggregate Fluctuations,” Econometrica, November 1982,
Volume 50, pages 1345-1370. This paper was cited in the 2004 Nobel prize award given
to Kydland and Prescott.
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An RBC Model

The basic RBC model assume perfectly functioning competitive markets, so
the outcomes generated by decentralized decisions by firms and households
can be replicated as the solution to a social planner problem.

The social planner wants to maximize

Et

[ ∞∑
i=0

βi (U(Ct+i ) − V (Nt+i ))

]
where Ct is consumption, Nt is hours worked, and β is the representative
household’s rate of time preference.

The economy faces constraints described by

Yt = Ct + It = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

and a process for the technology term At , usually a log-linear AR(1):

logAt = (1 − ρ) logA∗ + ρ logAt−1 + εt
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Formulating the Social Planner’s Problem

Remember our two constraints

Yt = Ct + It = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

We can simplify the problem by combining them into one equation:

AtK
α
t−1N

1−α
t = Ct + Kt − (1 − δ)Kt−1

We can then formulate the social planner’s problem as a Lagrangian problem
involving picking a series of values for consumption and labour, subject to
satisfying a series of constraints of the form just described:

L = Et

∞∑
i=0

βi [U(Ct+i ) − V (Nt+i )]

+Et

∞∑
i=0

βiλt+i

[
At+iK

α
t+i−1N

1−α
t+i + (1 − δ)Kt+i−1 − Ct+i − Kt+i

]
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How to Get the First-Order Conditions

This equation might look a bit intimidating. It involves an infinite sum, so
technically there is an infinite number of first-order conditions for current and
expected future values of Ct ,Kt and Nt .

But the problem is less hard than this makes it sound, Note that the time-t
variables appear in this sum as

U(Ct) − V (Nt) + λt
(
AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1

)
+βEt

[
λt+1

(
At+1K

α
t N

1−α
t+1 + (1 − δ)Kt

)]
After that, the time-t variables don’t ever appear again. So, the FOCs for the
time-t variables consist of differentiating this equation with respect to these
variables and setting the derivatives equal to zero.

Then, the time t + n variables appear exactly as the time t variables do,
except that they are in expectation form and they are multiplied by the
discount rate βn. But this means the FOCs for the time t + n variables will be
identical to those for the time t variables. So differentiating this equation
gives us the equations for the optimal dynamics at all times.
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The First-Order Conditions

Differentiating

U(Ct) − V (Nt) + λt
(
AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1

)
+βEt

[
λt+1

(
At+1K

α
t N

1−α
t+1 + (1 − δ)Kt

)]
We get following first-order conditions:

∂L

∂Ct
: U ′ (Ct) − λt = 0

∂L

∂Kt
: −λt + βEt

[
λt+1

(
α
Yt+1

Kt
+ 1 − δ

)]
= 0

∂L

∂Nt
: −V ′ (Nt) + (1 − α)λt

Yt

Nt
= 0

∂L

∂λt
: AtK

α
t−1N

1−α
t − Ct − Kt + (1 − δ)Kt−1 = 0
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The Euler Equation (Again)

Define the marginal value of an additional unit of capital next year as

Rt+1 = α
Yt+1

Kt
+ 1 − δ

Then the FOC for capital can be written as

λt = βEt (λt+1Rt+1)

This can then be combined with the FOC for consumption to give

U ′(Ct) = βEt [U ′(Ct+1)Rt+1]

Interpretation:

I Decrease consumption by ∆ today, at a loss of U ′(Ct)∆ in utility.
I Invest to get Rt+1∆ tomorrow.
I Worth βEt [U ′(Ct+1)Rt+1∆] in terms of today’s utility.
I Along an optimal path, must be indifferent.

Karl Whelan (UCD) RBCs and DSGEs Autumn 2023 9 / 54



CRRA Consumption and Separable Consumption-Leisure

We are going to work with a utility function of the form:

U(Ct) − V (Nt) =
C 1−η
t

1 − η
− bNt

This formulation of the Constant Relative Risk Aversion (CRRA) utility from
consumption and separate disutility from labour turns out to be necessary for
the model to have a stable growth path solution.

The Euler equation becomes

C−ηt = βEt

(
C−ηt+1Rt+1

)
And the condition for optimal hours worked becomes

−b + (1 − α)C−ηt

Yt

Nt
= 0
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The Full Set of Model Equations
The RBC model can then be defined by the following six equations (three
identities describing resource constraints, one a definition, and two FOCs
describing optimal behaviour)

Yt = Ct + It

Yt = AtK
α
t−1N

1−α
t

Kt = It + (1 − δ)Kt−1

Rt = α
Yt

Kt−1
+ 1 − δ

C−ηt = βEt

(
C−ηt+1Rt+1

)
Yt

Nt
=

b

1 − α
Cη
t

and the process for the technology variable

logAt = (1 − ρ) logA∗ + ρ logAt−1 + εt

These are not a set of linear difference equations, but a mix of both linear and
nonlinear equations: We need to figure out how to get a solution or at least
approximate one.
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Part II

Log-Linearization
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Linearization

In general, nonlinear systems like this cannot be solved analytically. However,
it turns out their solution can be very well approximated by a corresponding
set of linear equations.

The idea is to use Taylor series approximations. In general, any nonlinear
function F (xt , yt) can be approximated around any point (x∗t , y

∗
t ) using the

formula

F (xt , yt) = F (x∗t , y
∗
t ) + Fx (x∗t , y

∗
t ) (xt − x∗t ) + Fy (x∗t , y

∗
t ) (yt − y∗t )

+Fxx (x∗t , y
∗
t ) (xt − x∗t )2 + Fxy (x∗t , y

∗
t ) (xt − x∗t ) (yt − y∗t )

+Fyy (x∗t , y
∗
t ) (yt − y∗t )2 + ...

If the gap between (xt , yt) and (x∗t , y
∗
t ) is small, then terms in second and

higher powers and cross-terms will all be very small and can be ignored,
leaving something like

F (xt , yt) ≈ α + β1xt + β2yt

But if we “linearize” around a point that (xt , yt) is far away from, then this
approximation will not be accurate.
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Log-Linearization

DSGE models use a particular version of this technique. They take logs and
then linearize the logs of variables around a simple “steady-state” path in
which all real variables are growing at the same rate.

The steady-state path is relevant because the stochastic economy will, on
average, tend to fluctuate around the values given by this path, making the
approximation an accurate one.

This gives us a set of linear equations in the deviations of the logs of these
variables from their steady-state values.

Remember that log-differences are approximately percentage deviations

logX − logY ≈ X − Y

Y

so this approach gives us a system that expresses variables in terms of their
percentage deviations from the steady-state paths. It can be thought of as
giving a system of variables that represents the business-cycle component of
the model. Coefficients are elasticities and IRFs are easy to interpret.

Also log-linearization is easy. It doesn’t require taking lots of derivatives.
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How Log-Linearization Works
We will use lower-case letters to define log-deviations of variables from their
steady-state values.

xt = logXt − logX ∗

The key to the log-linearization method is that every variable can be written as

Xt = X ∗
Xt

X ∗
= X ∗ext

The big trick is that a first-order Taylor approximation of ext is given by

ext ≈ 1 + xt

So, we can write variables as

Xt ≈ X ∗ (1 + xt)

The second trick is for variables multiplying each other such as

XtYt ≈ X ∗Y ∗ (1 + xt) (1 + yt) ≈ X ∗Y ∗ (1 + xt + yt)

i.e. you set terms like xtyt = 0 because we are looking at small deviations
from steady-state and multiplying these small deviations together one gets a
term close to zero.
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Anything Else?

No, that’s it.

Substitute these approximations for the variables in the model, lots of terms
end up canceling out, and when you’re done you’ve got a system in the
deviations of logged variables from their steady-state values.

The best way to understand this stuff is to see it at work, so let’s work
through some examples from the RBC model.

Note that we have assumed that technology (the source of all long-run growth
in this economy) is given by

at = ρat−1 + εt

so there is no trend growth in this economy.

This means that the steady-state variables are all constants. Technically, there
is no great difficulty in modelling an economy with trend growth but this case
is a bit simpler.
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Log-Linearization Example 1

Start with
Yt = Ct + It

Re-write it as
Y ∗eyt = C∗ect + I ∗e it

Using the first-order approximation, this becomes

Y ∗ (1 + yt) = C∗ (1 + ct) + I ∗ (1 + it)

Note, though, that the steady-state terms must obey identities so

Y ∗ = C∗ + I ∗

Canceling these terms on both sides, we get

Y ∗yt = C∗ct + I ∗it

which we will write as

yt =
C∗

Y ∗
ct +

I ∗

Y ∗
it
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Log-Linearization Example 2

Now consider
Yt = AtK

α
t−1N

1−α
t

This can be re-written in terms of steady-states and log-deviations as

Y ∗eyt = (A∗eat ) (K∗)α eαkt−1 (N∗)1−α e(1−α)nt

Again, use the fact the steady-state values obey identities so that

Y ∗ = A∗ (K∗)α (N∗)1−α

So canceling gives
eyt = eat eαkt−1e(1−α)nt

Using first-order Taylor approximations, this becomes

(1 + yt) = (1 + at) (1 + αkt−1) (1 + (1 − α) nt)

Ignoring cross-products of the log-deviations, this simplifies to

yt = at + αkt−1 + (1 − α) nt
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The Full Log-Linearized System

Once all the equations have been log-linearized, we have a system of seven
equations of the form

yt =
C∗

Y ∗
ct +

I ∗

Y ∗
it

yt = at + αkt−1 + (1 − α) nt

kt =
I ∗

K∗
it + (1 − δ) kt−1

nt = yt − ηct

ct = Etct+1 −
1

η
Etrt+1

rt =

(
α

R∗
Y ∗

K∗

)
(yt − kt−1)

at = ρat−1 + εt

We are nearly ready to put the model on the computer. However, notice that
three of the equations have coefficients that are values relating to the
steady-state path. These need to be calculated.
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Part III

Calculating the Steady-State
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The Steady-State Interest Rate

We need to calculate C∗

Y ∗ , I∗

K∗ and α
R∗

Y ∗

K∗

We do this by taking the original non-linearized RBC system and figuring out
what things look like along a zero growth path.

Start with the steady-state interest rate. This is linked to consumption
behaviour via the so-called Euler equation (or Keynes-Ramsey condition):

1 = βEt

((
Ct

Ct+1

)η

Rt+1

)
Because we have no trend growth in technology in our model, the steady-state
features consumption, investment, and output all taking on constant values
with no uncertainty.

Thus, in steady-state, we have C∗t = C∗t+1 = C∗, so

R∗ = β−1

In a no-growth economy, the rate of return on capital is determined by the
rate of time preference.
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Other Steady-State Calculations

Take the equation for the rate of return on capital

Rt = α
Yt

Kt−1
+ 1 − δ

In steady-state, we have

R∗ = β−1 = α
Y ∗

K∗
+ 1 − δ

So, in steady-state, we have

Y ∗

K∗
=
β−1 + δ − 1

α

Together with the steady-state interest equation, this tells us that

α

R∗
Y ∗

K∗
= αβ

(
β−1 + δ − 1

α

)
= 1 − β (1 − δ)

which is the one of the steady-state values required
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Investment-Capital and Investment-Output Ratios

Next, we use the identity

Kt = It + (1 − δ)Kt−1

And the fact that in steady-state we have K∗t = K∗t−1 = K∗, to give

I ∗

K∗
= δ

which was also required.

This can then be combined with the previous steady-state ratio to give

I ∗

Y ∗
=

I∗

K∗

Y ∗

K∗

=
αδ

β−1 + δ − 1

And obviously
C∗

Y ∗
= 1 − αδ

β−1 + δ − 1

which gives us the other required steady-state ratios.
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The Final System

Using these steady-state identities, our system becomes

yt =

(
1 − αδ

β−1 + δ − 1

)
ct +

(
αδ

β−1 + δ − 1

)
it

yt = at + αkt−1 + (1 − α) nt

kt = δit + (1 − δ) kt−1

nt = yt − ηct

ct = Etct+1 −
1

η
Etrt+1

rt = (1 − β (1 − δ)) (yt − kt−1)

at = ρat−1 + εt

This is written in the standard format for systems of linear stochastic difference
equations. So, once we make assumptions about the underlying parameter values
(α, β, δ, η, ρ) we can apply solution algorithms such as Chris Sims’s gensys.m

routine to obtain a reduced-form solution, and thus simulate the model on the
computer.
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Part IV

Simulating the Model
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Parameterizing, Simulating and Checking IRFs
The next page shows how to specify, solve and simulate the RBC model using
Dynare, a package that works with Matlab. Note that you can write the
model in intuitive form and Dynare will do the log-linearising and solving for
steady states as well as simulating the model and calculating IRFs.

The subsequent few pages show some charts that illustrate the properties of
this model.

The uses parameter values intended for analysis of quarterly time series:
α = 1

3 , β = 0.99, δ = 0.015, ρ = 0.95, and η = 1 (i.e. log preferences).

The first chart shows results from a 500-period simulation of this model. It
demonstrates the main successful feature of the RBC model: It generates
actual business cycles and they don’t look too unrealistic.

In particular, reasonable parameterizations of the model can roughly match
the magnitude of observed fluctuations in output, and the model can match
the fact that investment is far more volatile than consumption.

In the early days of RBC research, this ability to match business cycle
dynamics was considered a major strength, and many economists began to
claim that there was no need for market imperfections to explain business
cycles.
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Dynare Code Specifying, Solving and Simulating the RBC
Model
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RBC Models Can Generate Cycles with Volatile Investment
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The RBC Model’s Propagation Mechanisms
Despite this success, these RBC models have still come in for some criticism.

One reason is that they have not quite lived up to the hype of their early
advocates. Part of that hype stemmed from the idea that RBC models
contained important propagation mechanisms for turning technology shocks
into business cycles.

The idea was that increases in technology induced extra output through
higher capital accumulation and by inducing people to work more.

In other words, some of the early research suggested that even in a world of
iid technology levels, one would expect RBC models to still generate business
cycles.

However, the figure on the next page shows that output fluctuations in this
model follow technology fluctuations quite closely: This shows that these
additional propagation mechanisms are quite weak.
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RBC Cycles Rely Heavily on Technology Fluctuations
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Autocorrelated Growth and Hump-Shaped IRFs
Cogley and Nason (AER, 1995) noted another fact about business cycles that
the RBC model does not match: Output growth is positively autocorrelated
(not very—autocorrelation coefficient of 0.34—but statistically significant).

But RBC models do not generate this pattern: See the figure on the next
page. They can only do so if one simulates a technology process that has a
positively autocorrelated growth rate.

Cogley and Nason relate this back to the IRFs generated by RBC models. The
figure on page 36 shows the responses of output, consumption, investment,
and hours to a unit shock to εt .

The figure on page 37 highlights that the response of output to the
technology shock pretty much matches the response of technology itself.

Cogley-Nason argue that one needs instead to have “humped-shaped”
responses to shocks—a growth rate increase needs to be followed by another
growth rate increase—if a model is to match the facts about autocorrelated
output growth. The responses to technology shocks do not deliver this. Also,
while we don’t have other shocks in the model (e.g. government spending
shocks), Cogley-Nason show RBC models don’t generate hump-shaped
responses for these either.
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RBCs Do Not Generate Positively Autocorrelated Growth
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Impulse Response Functions to Technology Shock
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Extending the RBC Approach

In addition to the Cogley-Nason critique, RBC models have also been criticised
for failing to explain the labour market response to technology shocks.

For example, a well known paper by Jordi Gali used long-run restriction
identification VAR methods to show that hours worked tends to decline after
a positive technology shock in strong contrast to the model’s predictions.

Over the years, many different branches of research have worked on fixing the
deficiencies of the basic RBC approach.

Some of them involve putting extra bells and whistles on the basic
market-clearing RBC approach: Examples include variable utilization, lags in
investment projects, habit persistence in consumer utility. Adding these
elements tends to strengthen the propagation mechanism element of the
model.

The second approach is to depart more systematically from the basic RBC
approach by adding rigidities such as sticky prices and wages. Some papers do
this and add the other bells-and-whistles. We will introduce a “full blown”
DSGE model of this type next.
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Part V

The Smets-Wouters Model
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A Popular DSGE Model

Now we will discuss a paper presenting a modern DSGE model that has a
number of New-Keynesian features and which has been estimated with
Bayesian methods.

The paper is “Shocks and Frictions in US Business Cycles: A Bayesian DSGE
Approach” by Frank Smets and Raf Wouters which was published in the
American Economic Review in 2007.

Smets is an economist with the ECB and Wouters works for the National Bank
of Belgium and the model was first developed for the euro area. Models like
this have been used for policy analysis at the ECB and other central banks.

This paper estimated the model for US data.

Both the euro area and U.S. Smets-Wouters papers have been among the
most cited papers in economics in recent years.

We will first present the log-linearized version of the model. An appendix with
the full model is available on the class website.

We will then discuss various applications of the model.
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The Log-Linearized Model: The Supply Side
The aggregate production function is

yt = φp (αks
t + (1 − α) lt + εat )

where yt is GDP, lt is labour input, εat is total factor productivity and ks
t is

capital in use, which is determined by the amount of capital installed in the
previous period and a capacity utilisation variable

ks
t = kt−1 + zt

There are cost of adjusting the amount of capital in use so optimisation
conditions for producers mean the rate of capacity utilisation is linked to the
marginal productivity of capital

zt = z1r
k
t

The marginal productivity of capital is a function of the capital-labour ratio
and the real wage

rkt = − (kt − lt) + wt

Total factor productivity evolves over time according to

εat = ρaε
a
t−1 + ηat
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The Log-Linearized Model: The Demand Side

The expenditure formulation of the aggregate resource constraint is

yt = cyct + iy it + zyzt + εgt

where yt is GDP, ct is consumption, it is investment and εgt is exogenous
spending. (Terms like cy and iy are constant parameters here.)

The variable zt features here because we are assuming there are costs
associated with having high rates of capacity utilisation.

Exogenous spending is assumed to have two components: Government
spending and element related to productivity because “net exports may be
affected by domestic productivity developments.”

Taken together, exogenous spending changes over time according to

εgt = ρεgt−1 + ηgt + ρgaη
a
t

Karl Whelan (UCD) RBCs and DSGEs Autumn 2023 38 / 54



The Log-Linearized Model: Consumption
Consumption is determined by

ct = c1ct−1 + (1 − c1)Etct+1 + c2 (lt − Et lt+1) − c3

(
rt − Etπt+1 + εbt

)
where c1, c2, c3 are constant parameters, rt is the interest rate on a one-period
safe bond and εbt evolves according to

εbt = ρbε
b
t−1 + ηbt

There are a number of aspects to this equation
1 It is a consumption Euler equation with a backward-looking element

added to it. This represents “habit formation” so that a term of the
form Ct − λCt−1 replaces Ct in the utility function.

2 The term involving labour input allows for some substitution between
consumption and labour input.

3 The coefficients c1, c2, c3 are themselves functions of deeper structural
parameters.

4 Smets-Wouters describe the εb term as a “risk premium” shock
determining the willingness of households to hold the one-period bond.
It can also be seen as a type of preference shock that influences the
short-term consumption-saving decision.
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The Log-Linearized Model: Investment
Investment is determined by

it = i1it−1 + (1 − i1)Et it+1 + i2qt + εit

where
qt = q1Etqt+1 + (1 − q1) rkt+1 −

(
rt − Etπt+1 + εbt

)
and

kt = k1kt−1 + (1 − k1) it + k2ε
i
t

Again, there is quite a lot going on here

1 Investment depends on lagged on investment because there is an
adjustment cost function that limits that amount of new investment that
can come “on line” immediately.

2 The main driving force behind investment is qt which itself is determined
by a forward-looking stochastic difference equation.

3 Solving the qt equation would show that qt depends positively on
expected future marginal productivities of capital and negatively on
future real interest rate (and “risk premia”)

4 The positive shock to investment also boosts the capital stock
(representing “more productive” capital).
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The Log-Linearized Model: Prices

The mark-up of price over marginal cost is determined by

µp
t = α (kt − lt) + εat − wt

which factors in diminishing marginal productivity of capital, the effects of the
productivity shock on costs and the real wage.

Price inflation is then determined by

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εpt

where εpt is a price mark-up disturbance that evolves according to

εpt = ρpεpt−1 + ηpt − µpη
p
t−1

Observations:

I This is a New-Keynesian Phillips curve amended to provide a role for
lagged inflation. This is modelled in the paper via the assumption that
most firms index their price to past inflation and only occasionally get to
set an optimal price.

I The mark-up shock affects both current and lagged inflation in an
attempt to get at temporary price level shocks.
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The Log-Linearized Model: Wages

The model treats wages similarly to prices, with sticky wages that gradually
adjust so that real wages are move to equate the marginal costs and benefits
of working.

Specifically, wages move over time to equate real wages with the marginal
rate of substitution between working and consuming. The gap between these
is the “wage mark-up” defined as

µw
t = wt −mrst

= wt −
(
σlt −

1

1 − λ/γ
(ct − λct−1)

)
Wages are then given by

wt = w1wt−1 + (1 − w1)Et (wt+1 + πt+1) − w2πt + w3πt−1 − wtµ
w
t + εwt

where
εwt = ρw εwt−1 + ηwt − µwη

w
t−1

Karl Whelan (UCD) RBCs and DSGEs Autumn 2023 42 / 54



The Log-Linearized Model: Monetary Policy

The final element of the model is a rule for monetary policy. It is assumed
that the central bank sets short-term interest rates according to

rt = ρrt−1 + (1 − ρ) (rππt + ry (yt − yp
t ))

+r∆y

[
(yt − yp

t ) −
(
yt−1 − yp

t−1

)]
+ εrt

where
εrt = ρr εrt−1 + ηrt

Here the interest rate depends on last period’s interest rate while gradually
adjusting towards a target interest rate (rππt + ry (yt − yp

t )) that depends on
inflation and the gap between output and its potential level (yt − yp

t ). It also
depends on the growth rate of this output gap.

Potential output is defined as the level of output that would prevail if prices
and wages were fully flexible. This means the model effectively needs to be
“expanded” to add a “shadow” flexible-price economy.
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Why So Many Bells And Whistles?

Relative to the pure RBC or New Keynesian models we saw before, this model
has lots of additional features:

1 Adjustment costs for investment.
2 Capacity utilisation costs.
3 Habit persistence.
4 Price indexation.
5 Wage indexation.
6 Lots of new autocorrelated distubance terms.

These help the model to address the weaknesses of the previous models.

1 Adjustment costs, utilisation costs and habit persistence all help to
“throw sand in wheels” of the model, making variables more sluggish
and giving random shocks a more long-lasting effect. This was a
weakness of the RBC model.

2 Indexation deals with the NK model’s failure to match inflation
persistence.

Still, it is hard to argue these are really “micro-founded” mechanisms. In many
ways, the model is quite ad hoc and hardly immune to the Lucas critique.
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The Observable VAR System
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Out-of-Sample Forecasting Beats VAR Models
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Explaining GDP Movements At Various Horizons
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Explaining Inflation Movements At Various Horizons
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Explaining Fed Funds Movements At Various Horizons
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The Impact of Various “Demand” Shocks
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Impulse Response for a Monetary Policy Shock
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Impulse Response for a Wage Mark-Up Shock
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Decomposing the Growth Rate of GDP
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Weaknesses and Strengths of DSGE Models

You’ve seen enough now to have a good sense of what modern DSGE models
look like and what they are used for.

The following is a fair list of weaknesses of these models

1 A large number of ad hoc economic mechanisms designed mainly to fit
persistence properties of the data rather than because economists have a
strong belief in these particular stories.

2 A large amount of unexplained shocks which are often highly persistent.
3 A minimal treatment of banking and financial markets (still true despite

current ongoing work.)
4 Very limited modelling of policy tools or details of national accounts.
5 Plenty of evidence that pure rational expectations assumption is flawed.
6 Claims that they are based on stable structural parameters and thus

immune to the Lucas critique are silly.

Still, there are a number of positive aspects that don’t feature in VARs
(imposition of budget constraints, a consistent story for how agents behave
and a coherent handling of expectations) and these strengths may help
DSGEs to be more useful for forecasting and “what if” analysis than VARs.
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