
Conditional Expectation Function (CEF)

� We begin by thinking about population relationships.

� CEF Decomposition Theorem: Given some outcome Yi and some covari-
ates Xi there is always a decomposition

Yi = E(Yi=Xi) + �i (1)

where

E(�i=Xi) = 0 (2)

� Proof:

E(�i=Xi) = E[(Yi � E(Yi=Xi))=Xi] (3)

= E(Yi=Xi)� E[E(Yi=Xi)=Xi] (4)

= 0 (5)
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� The last step uses the Law of Iterated Expectations:

E(Y ) = E[E(Y=X)] (6)

where the outer expectation is over X. For example, the average outcome
is the weighted average of the average outcome for men and the average
outcome for women where the weights are the proportion of each sex in
the population.

� The CEF Decomposition Theorem implies that �i is uncorrelated with any
function of Xi.

� Proof: Let h(Xi) be any function of Xi.

E[h(Xi)�i] = EfE[(h(Xi)�i)=Xi]g = Efh(Xi)E(�i=Xi)g = 0 (7)

� We refer to the E(Yi=Xi) as the CEF.
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� Best Predictor: E(Yi=Xi) is the Best (Minimum mean squared error �
MMSE) predictor of Yi in that it minimises the function

E((Yi � h(Xi))2 (8)

where h(Xi) is any function of Xi.

� A regression model is a particular choice of function for E(Yi=Xi).

� Linear regression:

Yi = �1 + �2X2i + :::+ �KXKi + " (9)

� Of course, the linear model may not be correct.
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Linear Predictors

� A linear predictor (with only one regressor) takes the form

E�(Yi=Xi) = �1 + �2X2i (10)

� Suppose we want the Best Linear Predictor (BLP) for Yi to minimise

E((Yi � E�(Yi=Xi))2 (11)

� The solution is

��1 = �Y � ��2�X (12)

��2 = cov(Xi; Yi)=V ar(Xi) (13)
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� In the multivariate case with

E�(Yi=Xi) = X
0
i� = �1 + �2X2i + :::+ �KXKi (14)

, we have

�� = E(XiX
0
i)
�1E(XiYi) (15)

� We can see this by taking the �rst order condition for (11)

Xi(Yi �X 0i�) = 0 (16)

� The error term "i = Yi � E�(Yi=Xi) satis�es E("iXi) = 0.

� E�(Y=X) is the best linear approximation to E(Y=X).

� If E(Yi=Xi) is linear in Xi, then E(Yi=Xi) = E�(Yi=Xi).
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� Will only be the case that E("i=Xi) = 0 if the CEF is linear. However
E("iXi) = 0 in all cases.

Example: Bivariate Normal Distribution

� Assume Z1 and Z2 are two standard normal variables and

X1 = �1 + �1Z1 (17)

X2 = �2 + �2(�Z1 +
q
(1� �2)Z2) (18)

� Then (X1; X2) are bivariate normal with Xj~N(�j; �2j).

� The covariance between (X1; X2) is ��1�2.
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� Then using (12) and (13), the BLP

E�(X2=X1) = �2 � ��1 + �X1 (19)

= �2 + �(X1 � �1) (20)

where

� = ��2=�1 (21)

� Note that using properties of the Normal distribution,

E(X2=X1) = �2 + �(X1 � �1) (22)

so the CEF is linear in this case.

� This is not true with other distributions.
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CEF and Regression Summary

� If the CEF is linear, then the population regression function is exactly it.

� If the CEF is non-linear, the regression function provides the best linear
approximator to it.

� The CEF is linear only in special cases such as:

1. Joint Normality of Y and X.

2. Saturated regression models �models with a separate parameter for every
possible combination of values that the regressors can take. This occurs
when there is a full set of dummy variables and interactions between the
dummies.
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For example, suppose we have a dummy for female (x1) and a dummy for white
(x2). The CEF is

E(Y=x1; x2) = �+ �1x1 + �2x2 + �x1x2 (23)

We can see that there is a parameter for each possible set of values

E(Y=x1 = 0; x2 = 0) = � (24)

E(Y=x1 = 0; x2 = 1) = �+ �2 (25)

E(Y=x1 = 1; x2 = 0) = �+ �1 (26)

E(Y=x1 = 1; x2 = 1) = �+ �1 + �2 + � (27)

Linear Regression

� The regression model is

Yi = X
0
i� + "i (28)

MA Econometrics Lecture Notes Prof. Paul Devereux

9



� We assume that E("i=Xi) = 0 if the CEF is linear.

� We assume only that E(Xi"i) = 0 if we believe the CEF is nonlinear.

� The population parameters are

� = E(XiX
0
i)
�1E(XiYi) (29)

� Here, Yi is a scalar and Xi is K �1 where K is the number of X variables.

� In matrix notation,

Y =

0BBB@
Y1
Y2
:
Yn

1CCCA ; X =

0BBB@
X 01
X 02
:
X 0n

1CCCA ; " =
0BBB@
"1
"2
:
"n

1CCCA (30)
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� So, we can write the model as

Y = X� + " (31)

where Y is n � 1, X is n �K, � is K � 1, and " is n � 1.

Best Linear Predictor

� We observe n observations on fYi; Xig for i = 1; ::::; n.

� We derive the OLS estimator as the BLP as it solves the sample analog of
minE((Yi �X

0
i�)

2).

� In fact it minimises 1=nPi(Yi �X 0ib)2.
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� In matrix notation, this equals (Y �Xb)0(Y �Xb) = Y 0Y � 2b0X 0Y +
b0X 0Xb

� FOC: X 0Y �X 0Xb = X 0(Y �Xb) = 0.

� So long as X 0X is invertible (X is of full rank), b = (X 0X)�1X 0Y

Regression Basics

� The �tted value of a regression

bY = Xb = X(X 0X)�1X 0Y = PY (32)

where P = X(X 0X)�1X 0.
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� The residuals

e = Y �Xb (33)

= Y �X(X 0X)�1X 0Y (34)

= (I � P )Y =MY (35)

� M and P are symmetric idempotent matrices.

� Any matrix A is idempotent if it is square and AA = A.

� P is called the projection matrix that projects Y onto the columns of X
to produce the set of �tted values

bY = Xb = PY (36)

� What happens when you project X onto X?
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� M is the residual-generating matrix as e =MY . We can easily show that

MY =M" (37)

so although the true errors are unobserved, we can obtain a certain linear
combination.

Frisch-Waugh-Lovell Theorem

� Consider the partitioned regression

Y = X1�1 +X2�2 + " (38)

� Here X1 is n �K1 and X2 is n �K2.
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� The FOC are  
X 01
X 02

!
(Y �X1b1 �X2b2) = 0 (39)

� Therefore
X 01(Y �X1b1 �X2b2) = 0
X 02(Y �X1b1 �X2b2) = 0

(40)

and

X 01X1b1 +X
0
1X2b2 = X 01Y (41)

X 02X1b1 +X
0
2X2b2 = X 02Y (42)

� Solving these simultaneous equations (you should be able to do this) we
get

b1 = (X 01M2X1)
�1X 01M2Y (43)

b2 = (X 02M1X2)
�1X 02M1Y (44)
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where M1 = I �X1(X 01X1)�1X 01 and M2 = I �X2(X 02X2)�1X 02.

� Implies can estimate b1 by regressing M2Y on M2X1.

� That is, can �rst regress Y and X1 on X2 and then regress residuals on
residuals.

� Note that one can also do this by regressing only X1 on X2 and then
regressing Y on the residuals.

Application to the Intercept

� Consider the case where X1 is the intercept (a column vector of ones)
X1 = l.

MA Econometrics Lecture Notes Prof. Paul Devereux

16



� Now

M1 = I � l(l0l)�1l0 = I �
1

n
ll0 (45)

� Note that 1nll
0 is an n � n matrix with each element equal to 1=n.

� Therefore, in this case,

M1X2 = X2 �X2 (46)

� Implies that regressing Y and X2 on a constant and then regressing resid-
uals on residuals is the same as taking deviations from means.

� Also implies that if you remove means from all variables, you do not need
to include a constant term.
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Example: Non-Linear and Linear CEF -- Birth Order and IQ in 5-Child Families (N=10214) 
 
1. X includes a constant and a linear Birth Order variable. 
 

10.0,2.5 21    
X1 X2 E(Y/X) ̂X E( /x) 
1 1 5.13 5.1 0.03 
1 2 4.94 5 -0.06 
1 3 4.85 4.9 -0.05 
1 4 4.86 4.8 0.06 
1 5 4.69 4.7 -0.01 

 
2. X includes a constant and dummy variables for Birth Order = 2, 3, 4, 5. 
 

44.0,27.0,28.0,19.0,13.5 54321    
X1 X2 X3 X4 X5 E(Y/X) ̂X E( /x) 
1 0 0 0 0 5.13 5.13 0 
1 1 0 0 0 4.94 4.94 0 
1 0 1 0 0 4.85 4.85 0 
1 0 0 1 0 4.86 4.86 0 
1 0 0 0 1 4.69 4.69 0 
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Effect of Birth Order on IQ Score (5-child families)

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

1 2 3 4 5

Birth Order

IQ
 S

co
re

CEF
Linear Regression

MA Econometrics Lecture Notes Prof. Paul Devereux

19



Instrumental Variables

� The regression model is Yi = X 0i� + "i

� OLS is consistent if E(Xi"i) = 0.

� If this assumption does not hold, OLS is endogenous.

Example 1: Simultaneous Equations

� The simplest supply and demand system:

qsi = �spi + "s (1)

qdi = �dpi + "d (2)

qsi = qdi (3)
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� In equilibrium,

pi =
"d � "s
�s � �d

(4)

� Obviously, pi is correlated with the error term in both equations.

Example 2: Omitted Variables

� Suppose Y = X1�1+X2�2+ " but we exclude X2 from the regression.

� Here X1 is n �K1 and X2 is n � (K �K1).

� The new error term v = X2�2 + " is correlated with X1 unless X1and
X2 are orthogonal or �2 = 0.
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Example 3: Measurement Error

� To see the e¤ect of measurement error, consider the standard regression
equation where there are no other control variables

yi = �+ �xi + �i (5)

� However, we observe

exi = xi + ui (6)

where ui is mean zero and independent of all other variables. Substituting
we get

yi = �+ �(exi � ui) + "i = �+ �exi + vi (7)

� The new error term vi = "i � �ui is correlated with exi.
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Overview of Instrumental Variables

� The basics of IV can be understood with one x and one z.

� Consider the standard regression equation where there are no other control
variables

yi = �+ �xi + �i (8)

� Let�s de�ne the sample covariance and variance matrices:

cov(xi; yi) =
1

n� 1
X
i

(xi � xi)(yi � yi) (9)

var(xi) =
1

n� 1
X
i

(xi � xi)2 (10)
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� The OLS estimator of � is

b�OLS = cov(xi; yi)

var(xi)
=
cov(xi; �+ �xi + �i)

var(xi)
= � +

cov(xi; �i)

var(xi)
(11)

If xi and �i are uncorrelated (E(xi�i) = 0), the probability limit of the
second term is zero and OLS is a consistent estimator (as the sample size
increases, the probability that the OLS estimate is not arbitrarily close to
� goes to zero).

� However if xi and �i are correlated (E(xi�i) 6= 0), the probability limit of
cov(xi; �i) does not equal zero and OLS is inconsistent.

� An instrumental variable, zi, is one which is correlated with xi but not
with �i. The instrumental variables (IV) estimator of � is

b�IV = cov(zi; yi)

cov(zi; xi)
=
cov(zi; �+ �xi + �i)

cov(zi; xi)
= � +

cov(zi; �i)

cov(zi; xi)
(12)
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� Given the assumption that zi and �i are uncorrelated (E(zi�i) = 0),
the probability limit of the second term is zero and the IV estimator is a
consistent estimator.

� When there is only one instrument, the IV estimator can be calculated
using the following procedure: (1) Regress xi on zi

xi = �+ �zi + vi (13)

and form bxi = b�+ b�zi
Then (2) estimate b� by running the following regression by OLS

yi = a+ �bxi + ei (14)

This process is called Two Stage Least Squares (2SLS).
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� It is quite easy to show this equivalence:

b�2SLS =
cov(bxi; yi)
var(bxi) =

cov(b�+ b�zi; yi)
var(b�+ b�zi) (15)

=
b�cov(zi; yi)b�2var(zi) =

cov(zi; yi)b�var(zi) (16)

Given

b� = cov(zi; xi)

var(zi)
(17)

This implies that

b�2SLS = cov(zi; yi)

cov(zi; xi)
= b�IV (18)

� The First Stage refers to the regression xi = �+ �zi + vi.

� The Reduced Form refers to the regression yi = � + �zi + ui.
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� The Indirect Least Squares (ILS) estimator of � is b�=b�. This also equalsb�IV .
� To see this, note that

b�ILS = b�b� = cov(zi; yi)

var(zi)

var(zi)

cov(zi; xi)
=
cov(zi; yi)

cov(zi; xi)
(19)

� OLS is often inconsistent because there are omitted variables. IV allows us
to consistently estimate the coe¢ cient of interest without actually having
data on the omitted variables or even knowing what they are.

� Instrumental variables use only part of the variability in x � speci�cally,
a part that is uncorrelated with the omitted variables � to estimate the
relationship between x and y.
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� A good instrument, z, is correlated with x for a clear reason, but uncorre-
lated with y for reasons beyond its e¤ect on x.
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Examples of Instruments

� Distance from home to nearest fast food as instrument for obesity.

� Twin births and sibling sex composition as instruments for family size

� Compulsory schooling laws as instruments for education.

� Tax rates on cigarettes as instruments for smoking.

� Weather shocks as instruments for income in developing countries

� Month of birth as instrument for school starting age.
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The General Model

� With multiple instruments (overidenti�cation), we could construct several
IV estimators.

� 2SLS combines instruments to get a single more precise estimate.

� In this case, the instruments must all satisfy assumptions E(zi�i) = 0.

� We can write the models as

Y = X� + "

X = Z� + v:

X is a matrix of exogenous and endogenous variables (n�K).
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Z is a matrix of exogenous variables and instruments (n�Q); Q � K.

The 2SLS estimator is

b�2SLS = (X 0PZX)�1X 0PZY (20)

where

PZ = Z(Z
0Z)�1Z0 (21)

� It can be shown that the 2SLS estimator is the most e¢ cient IV estimator.

� The Order Condition for identi�cation is that there must be at least as
many instruments as endogenous variables: Q � K. This is a necessary
but not su¢ cient condition.

� The Rank Condition for identi�cation is that rank(Z0X) = K. This is
a su¢ cient condition and it ensures that there is a �rst stage relationship.
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� Example: Suppose we have 2 endogenous variables

x1 = a1 + a2z1 + a3z2 + u1
x2 = b1 + b2z1 + b3z2 + u2

The order condition is satis�ed. However, if a2 = 0 and b2 = 0, the rank
condition fails and the model is unidenti�ed. If a2 = 0 and b3 = 0 and the
other parameters are non-zero, the rank condition passes and the model is
identi�ed.

Variance of 2SLS Estimator

� Recall the 2SLS estimator
b�2SLS = (X 0PZX)

�1X 0PZy
=

�cX 0cX� cX 0Y
where cX = PZX is the predicted value of X from the �rst stage regres-
sion.
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� Given this is just the parameter from an OLS regression of Y on cX, the
estimated covariance matrix under homoskedasticity takes the same form
as OLS:

dV ar(b�2SLS) = b�2 �cX 0cX��1 = b�2(X 0PZX)�1
where

b�2 = 1

n�K
(Y �X b�2SLS)0(Y �X b�2SLS)

� Note that b�2 uses X rather than cX. Shows that standard errors from
doing 2SLS manually are incorrect.

� We can simplify this further in the case of the bivariate model from equa-
tions (8) and (13).
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� In this case, the element in the second row and second column ofX 0PZX =

(X 0Z)(Z0Z)�1(Z0X) simpli�es to (algebra is a bit messy)

n2cov(zi; xi)
2

nvar(zi)

implying that the relevant element of

(X 0PZX)
�1 =

1

n�2xz�
2
x

(22)

where the correlation between x and z equals

�xz =
cov(zi; xi)

�x�z

� Equation (22) tells us that the 2SLS variance

1. Decreases at a rate of 1=n.
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2. Decreases as the variance of the explanatory variable increases.

3. Decreases with the correlation between x and z. If this correlation ap-
proaches zero, the 2SLS variance goes to in�nity.

4. Is higher than the OLS variance as, for OLS, �xz = 1 as OLS uses x as
an instrument for itself.

Hausman Tests

� Also referred to as Wu-Hausman, or Durbin-Wu-Hausman tests.

� Have wide applicability to cases where there are two estimators and
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1. Estimator 1 is consistent and e¢ cient under the null but inconsistent under
the alternative.

2. Estimator 2 is consistent in either case but is ine¢ cient under the null.

� We will only consider 2SLS and OLS cases.

� The null hypothesis is that E(X 0") = 0.

� Suppose we have our model Y = X� + ":

� If E(X 0") = 0 the OLS estimator provides consistent estimates.
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� If E(X 0") 6= 0 and we have valid instruments, 2SLS is consistent but OLS
is not.

� If E(X 0") = 0 2SLS remains consistent but is less e¢ cient than OLS.

� Hausman suggests the following test statistic for whether OLS is consistent:

h =
�b�OLS � b�2SLS�0 hV �b�2SLS�� V �b�OLS�i�1 �b�OLS � b�2SLS�

which has an asymptotic chi square distribution.

� Note that a nice feature is that one does not need to estimate the covari-
ance of the two estimators.
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Hausman Test as Vector of Contrasts (1)

� Compare the OLS estimator b�OLS = (X 0X)�1X 0Y to the 2SLS estima-
tor b�2SLS = (X 0PZX)�1X 0PzY where Pz is symmetric n � n matrix
with rank of at least K.

� Under the null hypothesis E(X 0") = 0;both are consistent.b�2SLS � b�OLS = (X 0PzX)�1X 0PzY � (X 0X)�1X 0Y
= (X 0PzX)�1

h
X 0PzY � (X 0PzX)(X 0X)�1X 0Y

i
= (X 0PzX)�1X 0Pz

h
I �X(X 0X)�1X 0

i
Y

= (X 0PzX)�1X 0PzMXY (23)

� The probability limit of this di¤erence will be zero when

p lim
1

n
X 0PzMXY = 0 (24)
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� We can partition the X matrix as X = [X1X2] where X1 is an n � G
matrix of potentially endogenous variables and X2 is an n � (K � G)

matrix of exogenous variables.

� We have instruments Z where Z = [Z�X2] an n �Q matrix (Q � K).

� Letting hats denote the �rst stage predicted values, clearly cX2 = X2 and
X2Mx is zero for the rows of Mx corresponding to X2.

� Therefore checking that p lim 1
nX

0PzMXY = 0 reduces to checking whether
p lim 1

nX
0
1PzMXY = p lim 1

n
cX 01MXY = 0.

� We can implement this test using an F-test on � in the regression:

Y = X� + cX1� + error (25)
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� Denoting � = 0 as the restricted model, the F-statistic is

H =
RSSr �RSSu

RSSu=(n�K �G)
(26)

� Note from (23), that we can also do the test by regressing MXY on cX
and testing whether the parameters are zero.

Hausman Test as Vector of Contrasts (2)

� Compare the OLS estimator b�OLS = (X 0X)�1X 0Y to a di¤erent OLS
estimator where Z� is added as a control:

Y = X� + Z�
 + v (27)
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� Because of the exclusion restriction, Z� should have no explanatory power
when X is exogenous.

� Using the Frisch-Waugh-Lovell theorem, the resulting estimate of � is b�p:b�p = (X 0MZ�X)
�1X 0Mz�Y (28)

� Subtracting the OLS estimator,

b�p � b�OLS = (X 0Mz�X)�1X 0Mz�Y � (X 0X)�1X 0Y
= (X 0Mz�X)�1

h
X 0Mz�Y � (X 0Mz�X)(X 0X)�1X 0Y

i
= (X 0Mz�X)�1X 0Mz�

h
I �X(X 0X)�1X 0

i
Y

= (X 0Mz�X)�1X 0Mz�MXY (29)
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� By analogy with equation (25), we can implement an F-test for whether
p lim 1

nX
0Mz�MXY = 0 by testing whether � = 0 in the regression:

Y = X� +Mz�X� + error (30)

� One can show (not easily) that the resulting F-statistic is identical to that
above.

� Alternatively, we can regress MXY on Mz�X and test whether the para-
meters are zero.
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Two-Sample 2SLS

� Suppose have 2 samples from the same population.

� X is a matrix of exogenous and endogenous variables (N � K). Z is a
matrix of exogenous variables and instruments (N �Q); Q � K.

� Sample 1 contains Y and Z but not the endogenous elements of X.

� Sample 2 contains X and Z but not Y .

� Using subscript to denote sample, can implement TS2SLS by
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1. Do the �rst stage regression(s) using Sample 2 observations

X2 = Z2� + v2 (31)

and estimate

b� = (Z02Z2)�1Z02X2 (32)

2. Form the predicted value of X1 as

cX1 = Z1b� (33)

3. Regress Y on cX1 using Sample 1 observations.
b�TS2SLS = (cX 01cX1)�1cX 01Y (34)

where cX1 = Z1(Z02Z2)�1Z02X2 (35)
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� Note that with one endogenous variable and one instrument, we can take
an ILS approach.

1. Do step 1. as with TS2SLS to get b�.
2. Estimate the Reduced Form using Sample 1

Y = Z1� + u1 (36)

3. Take the ratio of the Reduced Form and First Stage Estimates:

b�ILS = b�b� (37)
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� To see this note that

b�TS2SLS = (cX 01cX1)�1cX 01Y
= [X 02Z2(Z

0
2Z2)

�1Z01Z1(Z
0
2Z2)

�1Z02X2]
�1X 02Z2(Z

0
2Z2)

�1Z01Y

= (Z02X2)
�1(Z02Z2)(Z

0
1Z1)

�1(Z02Z2)(X
0
2Z2)

�1X 02Z2(Z
0
2Z2)

�1Z01Y

= (Z02X2)
�1(Z02Z2)(Z

0
1Z1)

�1Z01Y

= [(Z02Z2)
�1Z02X2]

�1(Z01Z1)
�1Z01Y

= b��1b� (38)

� This derivation is valid so long as Q = K so X 02Z2 and Z
0
2X2 are square

matrices that we can invert.

� It also uses the matrix inversion rule: (ABC)�1 = C�1B�1A�1
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Example: Devereux and Hart 2010

� Return to education using UK change in compulsory school law.

� If born 1933 or after have minimum leaving age of 15 rather than 14.

� New Earnings Survey has earnings and cohort (Y and Z).

� General Household Survey has education and cohort (X and Z).

� In General Household Survey estimate

Education = �0 + �11(Y OB � 1933) +W�2 + e1 (39)
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� In New Earnings Survey estimate

Log(earnings) = 
0 + 
11(Y OB � 1933) +W
2 + e2 (40)

� Then the TS2SLS estimator of the return to education is b� = c
1c�1 .
� To calculate the standard error we use the delta method.

The Delta Method

� This is a method for estimating variances of functions of random variables
using taylor-series expansions.

f(x; y) = f(x0; y0)+
@f(x; y)

@x
jx0;y0 (x�x0)+

@f(x; y)

@y
jx0;y0 (y�y0)+:::
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� For the case where f(x; y) = y=x, @f(x;y)@x = �y
x2
and @f(x;y)@y = 1

x.

� Therefore, evaluating at the means of x and y,
y

x
'
�y

�x
�
�y

�2x
(x� �x) +

1

�x
(y � �y) (41)

� Then,

var

�
y

x

�
'
�2y

�4x
var(x) +

1

�2x
var(y)� 2

�y

�3x
cov(x; y) (42)

� In our case

var(b�) ' b
21b�41var(b�1) +
1b�21var(b
1) (43)
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� Note that the covariance term disappears because the parameters are es-
timated from 2 independent samples.
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The Method of Moments (MOM)

� A population moment is just the expectation of some continuous function
of a random variable:


 = E[g(xi)] (1)

� For example, one moment is the mean: � = E(xi).

� The variance is a function of two moments:

�2 = E[xi � E(xi)]2 (2)

= E(x2i )� [E(xi)]2 (3)

� We also refer to functions of moments as moments.
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� A sample moment is the analog of a population moment from a particular
random sample

b
 = 1

n

X
i

g(xi) (4)

� So, the sample mean is b� = 1
n

P
i xi.

� The idea of MOM is to estimate a population moment using the corre-
sponding sample moment.

� For example, the MOM estimator of the variance using (3) is

b�2 =

0@1
n

X
i

x2i

1A�
241
n

X
i

xi

352 (5)

=
1

n

X
i

(xi � xi)2 (6)
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� This is very similar to our usual estimator of the variance
1

n� 1
X
i

(xi � xi)2 (7)

� The MOM estimator is biased but is consistent.

� Alternatively, we could calculate the MOM estimator directly using (2)

b�2 = 1

n

X
i

(xi � xi)2 (8)

OLS as Methods of Moments Estimator

� Our population parameters for linear regression were

� = E(XiX
0
i)
�1E(XiYi) (9)
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� Can derive method of moments estimator by replacing population moments
E(XiX

0
i) and E(XiYi) by sample moments:

b =

241
n

X
i

XiX
0
i

35�1 1
n

X
i

XiYi = (X
0X)�1X 0Y (10)

� Or alternatively, we can use the population moment condition

E(Xi"i) = E(Xi(Yi �X 0i�)) (11)

� The MOM approach is to choose an estimator b so that it sets the sample
analog of (11) to zero:

1

n

X
i

Xi(Yi �X 0ib) = 0 (12)
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This implies that

1

n

X
i

XiYi =
1

n

X
i

XiX
0
ib (13)

So

b =

241
n

X
i

XiX
0
i

35�1 1
n

X
i

XiYi = (X
0X)�1X 0Y (14)

� Note that this is the OLS estimator.

Generalized Method of Moments (GMM)

� We saw earlier that the OLS estimator solves the moment condition

E(Xi(Yi �X 0i�)) = 0 (15)
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� This moment condition was motivated by the condition E(Xi"i) = 0.

� This type of approach can be extended.

� For example, we may know that E(Zi"i) = 0 where Zi may include some
of the elements of Xi.

� The idea of GMM is to substitute out the error term with a function of
data and parameters.

� Then �nd the parameter values that make the conditions hold in the sam-
ple.
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� Let "i(�) = (Yi �X 0i�). We �nd the parameter such that

1

n

X
i

gi(�) =
1

n

X
i

Zi"i(�) =
1

n
Z0(Y �X�) (16)

is as close as possible to zero.

� A �rst guess might be the MOM estimator

b� = (Z0X)�1Z0Y (17)

but this only works if Z0X is invertible and this is only the case if it is a
square matrix.

� MOM only works when the number of moment conditions equals the num-
ber of parameters to be estimated.
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� Instead GMM solves the following problem:

min
�
1

n
Z0(Y �X�)

�0
W

�
1

n
Z0(Y �X�)

�
(18)

� Here W is called the weight matrix and is some positive de�nite (PD)
square matrix.

� Taking the �rst order conditions, we get

b� = (X 0ZWZ0X)�1X 0ZWZ0Y (19)

� To see this, note that
�
Z0(Y �X�)

�0W �
Z0(Y �X�)

�
= (Z0Y � Z0X�)0W (Z0Y � Z0X�)

= Y 0ZWZ0Y � Y 0ZWZ0X� � �0X 0ZWZ0Y + �0X 0ZWZ0X�

= Y 0ZWZ0Y � 2�0X 0ZWZ0Y + �0X 0ZWZ0X�
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This uses the fact that the transpose of a scalar is itself. Then, taking �rst
order conditions

�2X 0ZWZ0Y + 2X 0ZWZ0X� = 0 (20)

� X 0ZWZ0X will be invertible so long as the number of moment conditions,
Q (elements of Z) is as least as big as the number of parameters, K
(elements of X).

� For example, not invertible if

Yi = X1i�1 +X2i�2 + "i (21)

Zi = X1i�1 (22)

� When Q > K, GMM estimates will not cause all moment conditions to
equal zero but will get them as close to zero as possible.
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� When Q = K, as we would expect from (17),

b� = (Z0X)�1Z0Y (23)

To see this note that when Q = K, Z0X is a square matrix so

(X 0ZWZ0X)�1 = (Z0X)�1W�1(X 0Z)�1 (24)

(remember (ABC)�1 = C�1B�1A�1). Also note that in this case, W
plays no role.

� This is exactly the IV estimator we saw earlier.

� If X = Z, the GMM estimator is exactly the OLS estimator.
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Consistency of GMM Estimator

� The GMM estimator

b� = (X 0ZWZ0X)�1X 0ZWZ0Y (25)

= � + (X 0ZWZ0X)�1X 0ZWZ0" (26)

= � +

 
X 0Z
n
W
Z0X
n

!�1 
X 0Z
n
W
Z0"
n

!
(27)

� Using the Law of Large Numbers (LLN),

X 0Z
n

= 1=n
X
i

XiZ
0
i ! �XZ (28)

Z0X
n

= 1=n
X
i

ZiX
0
i ! �ZX (29)

Z0"
n

= 1=n
X
i

Zi"i ! E(Zi"i) (30)
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� Denote

H = (�XZW�ZX)
�1�ZXW (31)

� Then b� � � ! HE(Zi"i) = 0 (32)

showing consistency of GMM for any PD weighting matrix, W .

Choice of Weight Matrix

� Under some regulatory conditions, the GMM b� is also asymptotically nor-
mally distributed for any PD W .

� If the model is overidenti�ed (Q > K), the choice of weight matrix a¤ects
the asymptotic variance and also the coe¢ cient estimates in �nite samples.
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� The "best" choice for W is the inverse of the covariance of the moments
i.e. the inverse of the covariance matrix of

Z0(Y �X�) =
X
i

Zi"i (33)

� However, this is unknown and needs to be estimated in the data. We can
use a 3-step procedure

1. Choose a weight matrix and do GMM. Any PD weighting matrix will give
consistent estimates. A good initial choice is

W = (Z0Z=n)�1 (34)

This gives the estimator

b� = (X 0Z(Z0Z)�1Z0X)�1X 0Z(Z0Z)�1Z0Y (35)

= (X 0PzX)�1X 0PzY (36)

This is exactly the 2SLS estimator we saw earlier.
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2. Take the residuals and use them to estimate the covariance of the moments

dV ar(X
i

Zi"i) =
1

n

X
i

e2iZiZ
0
i (37)

where

ei = Yi �X 0ib� (38)

3. Do GMM with cW as weight matrix where cW = (1n
P
i e
2
iZiZ

0
i)
�1. Low

variance moments are given higher weight in estimation than high variance
moments.

� Note that if the errors are homoskedastic, this is just the 2SLS estimator.

Variance of GMM Estimator
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� In the general case, the GMM estimator is

min g(�)0Wg(�) (39)

where the moment conditions are g(�) = 0.

� The variance of the GMM estimator is

1

n
(G0WG)�1G0W	WG(G0WG)�1 (40)

where G = @g(�)
@� and 	 is the variance-covariance matrix of the moments.
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� In the OLS case,

g(�) = E(Xi"i) = 0 (41)bg(�) = 1=n
X
i

Xi(Yi �X 0i�) = 0 (42)

W = I (43)

G =
@bg(�)
@�

=
X 0X
n

(44)

	 = E[(Xi"i)(Xi"i)
0] = E["2iX

0X] (45)

b	 = b�2"X 0Xn (46)

where the last step assumes homoskedasticity. Putting these together we
get bV (b�) = b�2"(X 0X)�1 (47)
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� In the 2SLS case,

g(�) = E(Zi"i) = 0 (48)bg(�) = 1=n
X
i

Zi(Yi �X 0i�) = 0 (49)

W =

 
Z0Z
n

!�1
(50)

G =
@bg(�)
@�

=
Z0X
n

(51)

	 = E[(Zi"i)(Zi"i)
0] = E["2iZ

0Z] (52)

b	 = b�2"Z0Zn (53)

where the third and last steps assume homoskedasticity. Putting these
together we get bV (b�) = b�2"(X 0PzX)�1 (54)

� This formula ignores the fact that the weight matrix is estimated and so
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may understate the true variance.

Why Use GMM in Linear Models?

� When the model is just identi�ed, GMM coincides with IV or OLS. So no
reason to use GMM.

� In overidenti�ed models with homoskedastic errors,

cW = (
1

n

X
i

e2iZiZ
0
i)
�1 = b�2e 1nXi (ZiZ0i)�1

and the GMM estimator coincides with 2SLS. So no reason to use GMM.

� In overidenti�ed models with heteroskedasticity, GMM is more e¢ cient
than 2SLS.
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� Also, in time series models with serial correlation, GMM is more e¢ cient
than 2SLS.

� When estimating a system of equations, GMM is particularly useful. You
will see this in Kevin Denny�s section of the course.

Relationship of GMM to Maximum Likelihood

Maximum Likelihood Interpretation of OLS

� The regression model is

Yi = X
0
i� + "i (55)
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� Assume that

"i=Xi~i:i:d:N(0; �
2) (56)

Xi~i:i:d:g(x) (57)

� The likelihood function is the joint density of the observed data evaluated
at the observed data values.

� The joint density of fYi; Xig is

f(y; x) = f(y=x)g(x) =
1

�
p
2�
exp

�
� 1

2�2
(y � x0�)2

�
g(x) (58)

� The likelihood function is

L =
Y 1

�
p
2�
exp

�
� 1

2�2
(Yi �X 0i�)2

�
g(Xi) (59)

=
1

(�
p
2�)n

exp

8<:� 1

2�2

X
i

(Yi �X 0i�)2
9=;Y g(Xi) (60)
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� Taking Logs,

LogL = �n
2
Log(�2)�n

2
Log(2�)� 1

2�2

X
i

(Yi�X 0i�)2+
X
i

Logg(Xi)

� Ignoring the last term which is not a function of � or �,

LogL = �n
2
Log(�2)� n

2
Log(2�)� 1

2�2
(Y �X�)0(Y �X�)

= �n
2
Log(�2)� n

2
Log(2�)� 1

2�2

n
Y 0Y � 2�0X 0Y + �0X 0X�

o

� Taking �rst order conditions of this scalar with respect to � and �2

1b�2
n
X 0Y +X 0X b�o = 0 (61)

� n

2b�2 + 1

2b�4(Y �X b�)0(Y �X b�) = 0 (62)
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� These imply the MLE

b� = (X 0X)�1X 0Y (63)

b�2 =
(Y �X b�)0(Y �X b�)

n
(64)

� Note that when taking the �rst FOC, we are just minimising the sum of
squared errors.

GMM Interpretation of Maximum Likelihood

� In the general case, the GMM estimator is

min g(�)0Wg(�) (65)

where the moment conditions are g(�) = 0.
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� The FOC are

2W
@g

@�
g(�) = 0 (66)

� Consider the following moment:

g(�) =
@LogL

@�
(67)

so

@g

@�
=
@2LogL

@�@�0
(68)

� The optimal weight matrix is the inverse of the variance-covariance matrix
of the moments. In this case,

V [g(�)] = V

"
@LogL

@�

#
= �E

"
@2LogL

@�@�0

#
(69)
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and, so, the best estimate of the optimal weighting matrix is 
@2LogL

@�@�0

!�1
(70)

� Substituting these into the FOC, we �nd that the GMM estimator is de�ned
by @LogL@� = 0, the same as ML.

� So the ML estimator can be seen as a GMM estimator with a particular
set of moment equations.

Limited Information Maximum Likelihood (LIML)

� ML version of 2SLS.
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� Assumes joint normality of the error terms.

� LIML estimate exactly the same as 2SLS if model is just identi�ed.

� LIML and 2SLS are asymptotically equivalent.

� LIML has better small sample properties than 2SLS in over-identi�ed mod-
els.
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