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Finite Sample Distributions

Because it is well known that OLS estimates of time series regression models
are consistent when they feature I (0) series while they are inconsistent and
generate non-standard distributions when using I (1) series, econometric
textbooks tend to stress a strong dichotomy between the stationary and
non-stationary series. This gets reflected in a lot of econometric practise.

The message—that things change drastically when we move from an I (0)
series to a unit root series—is somewhat misleading. Practical applications
do not use infinite amounts of data and the speeds at which time series
estimates converge to their asymptotic distributions is often very slow.

In truth, for any given sample size, there is no great jump in the behaviour
as we go from ρ < 1 to ρ = 1. Many of the problems that occur with unit
root series also apply to high values of ρ.

Here I’ll illustrate these points and then move on to discussing some ways to
deal with them.
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The Bias of OLS AR(1) Estimates

Recall that for the AR(1) model, the OLS estimate can be written as

ρ̂ = ρ +
T∑

t=2

(
yt−1∑T
t=2 y2

t−1

)
εt (1)

εt is independent of yt−1, so E (yt−1εt) = 0. However, εt is not independent

of the sum
∑T

t=2 y2
t−1.

If ρ is positive, then a positive shock εt raises current and future values of
yt+k , all of which are in the sum

∑T
t=2 y2

t−1. This means there is a negative
correlation between εt and yt−1∑T

t=2 y2
t−1

, so E ρ̂ < ρ.

The size of the bias depends positively on two factors:

1 The size of ρ: The bigger this is, the stronger the correlation of the
shock with future values.

2 The sample size T : The larger this is, the smaller the fraction of the
observations sample that will be highly correlated with the shock.
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Example: AR(1) Bias When ρ = 0.7

The next few slides illustrate the bias in ρ̂ when estimating AR(1)
regressions using OLS.

In each case, we report the distribution of the bias of OLS estimates ρ̂− ρ
when the true value of ρ = 0.7 but we vary the sample size.

In the first chart, the sample size is T = 10, 000 and the asymptotic theory
is working very well: There is no bias and the distribution of ρ̂ is normal.

When the sample size if T = 1, 000, you can just about see the asymptotic
theory starting to fail: There is a small average bias of -0.13 and the
distribution is a tiny bit skewed.

As the samples get smaller, the bias gets larger and the distributions become
more skewed. By the time we get to T = 30, the bias is as large as -0.045
while for T = 10 the bias is -0.116.
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Bias From AR(1) Regression, ρ = 0.7, T = 10000
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Bias From AR(1) Regression, ρ = 0.7, T = 1000
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Bias From AR(1) Regression, ρ = 0.7, T = 300
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Bias From AR(1) Regression, ρ = 0.7, T = 50
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Bias From AR(1) Regression, ρ = 0.7, T = 30
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Bias From AR(1) Regression, ρ = 0.7, T = 20
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Bias From AR(1) Regression, ρ = 0.7, T = 10
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Example: AR(1) Bias for T = 50 as ρ Increases

The next few slides repeat the process of showing distributions of the bias of
OLS estimates ρ̂− ρ but in this case, we vary the value of ρ instead of the
sample size, which is kept fixed at T = 50.

Our first chart shows the bias when ρ = 0.05, so the series is almost white
noise, meaning the observations are close to being i.i.d. The logic of the
Lindberg-Levy Central Limit Theorem for i.i.d. observations works well here
and the estimator has a Normal distribution.

For ρ = 0.3 and ρ = 0.5, there is some bias and the distribution becomes a
bit more skewed.

By ρ = 0.8, the distribution is highly skewed and the bias is -0.03.

The skewness in the distribution increases all the way up to ρ = 1. But note
that there is no great jump in the size of the bias or the shape of the
distribution as ρ goes from 0.99 to 1. The asymptotic theory for ρ = 0.99
may be completely different from the theory for ρ = 1 but in finite samples
there is no great difference.
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Bias From AR(1) Regression, ρ = 0.05, T = 50
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Bias From AR(1) Regression, ρ = 0.30, T = 50
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Bias From AR(1) Regression, ρ = 0.50, T = 50
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Bias From AR(1) Regression, ρ = 0.80, T = 50
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Bias From AR(1) Regression, ρ = 0.90, T = 50
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Bias From AR(1) Regression, ρ = 0.95, T = 50
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Bias From AR(1) Regression, ρ = 0.99, T = 50
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Bias From AR(1) Regression, ρ = 1, T = 50
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Spurious Regressions Without Nonstationarity

We know that when we regress one I (1) series on another, we can get
spuriously significant coefficients. What is less well known is that the
problem of spuriously significant results can also occur with stationary series.

The next page illustrates results from simulations in which we take two
stationary series

yt = ρyt−1 + εy
t (2)

xt = ρxt−1 + εx
t (3)

and regress yt and xt for various values of ρ for a sample of T = 200.

According to the asymptotic distribution, t statistics greater than 1.96 in
absolute value should only be observed 5% of the time.

However, the figure shows that even when we adjust for autocorrelation
(using the Newey-West heteroskedastic and autocorrelation consistent
covariance matrix) the fraction of t statistics greater than 1.96 rises well
above five percent as ρ increases.
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Regressing Two AR(1) Series With Common Value of ρ
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Median Unbiased Estimates and Confidence Intervals

Given that we know OLS estimates of AR(1) models are biased, is there a
way to get better estimates?

Andrews (1993) provided calculations of the distributions of OLS estimators
for various values of ρ and for various sample sizes under the assumption of
Normally distributed errors. These kinds of calculations can be used to
provide new estimates of ρ and confidence intervals.

Use Monte Carlo simulation methods to simulate the distribution of OLS
estimators for each value of ρ for a sample size of T . Label the 5th
percentile of the resulting OLS estimators q5 (ρ), the median q50 (ρ) and the
95th percentile value q95 (ρ). Define the inverse function q−1

α such that
q−1

α (qα (ρ)) = ρ.

If one obtains a value of ρ̂ from a sample of size T , then the
median-unbiased estimator of ρ is the value such q50 (ρ) = ρ̂. In other
words, it’s the value of ρ such that when this is the true value, you are as
likely to get an OLS estimate above ρ̂ as you are to get one below.

A 2α% confidence interval can be constructed as
(
q−1

1−α (ρ̂) , q−1
α (ρ̂)

)
. The

probability of observing ρ̂ equals α percent for the values at both ends of
this interval.
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Bootstrap Confidence Intervals for AR Models

In many cases, it is not accurate to assume that the error terms in AR
models are Normally distributed.

An alternative is to use bootstrap methods. For example, consider the case
of the AR(1) model, yt = α + ρyt−1 + εt−1. We can use simulation methods
that mimic the distribution of the in-sample residuals, whether or not these
residuals appear to be normally distributed.

Bruce Hansen (1999) describes a grid bootstrap method that works
roughly as follows:

1 Estimate the model via OLS to obtain residuals ε̂t .
2 For a wide range of values of ρ, construct new simulated series by

making an assumption about the initial value y∗0 and setting
y∗k = α + ρy∗k−1 + ε∗k by picking the ε∗k from randomly choosing values
from from ε̂t .

3 For each value of ρ generate a distribution of OLS estimates from the
simulated series and save the quantiles qp (ρ).

4 As with the Andrews method, median unbiased estimates can be
defined as q−1

50 (ρ̂) and confidence intervals constructed as(
q−1

1−α (ρ̂) , q−1
α (ρ̂)

)
Karl Whelan (UCD) Finite-Sample Distributions February 22, 2011 24 / 25



Bootstrapping Standard Errors for VARs

After estimating a VAR model Zt = AZt−1 + εt it is common to present the
impulse response functions. In this reduced-form VAR, these IRFs are
I ,A,A2, .... What is the sampling distribution of these estimates?

If the VAR is estimated via OLS, then the standard asymptotic results apply,
and the coefficients in A have a limiting normal distribution. The IRFs are
nonlinear functions of these coefficients so we can use the Delta method to
get approximations to the asymptotic distributions of the IRF estimates.
Unfortunately, these estimates are not very accurate in finite samples.

Most VAR practitioners now use bootstrap methods.
1 Estimate the VAR via OLS and save the errors ε̂t .
2 Randomly sample from these errors to create, for example, 10,000

simulated data series Z∗
t = ÂZ∗

t−1 + ε∗t .
3 Estimate a VAR model on the simulated data and save the 10,000 IRFs

associated with these estimate.
4 Calculate quantiles of the simulated IRFs, e.g. of the 10,000 estimates

of the effect in period 2 on variable i of shock j .
5 Use the 5th and 95th quantiles of the simulated IRFs as confidence

intervals.
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