Rational Expectations and Consumption

Elementary Keynesian macro theory assumes that households make consumption decisions based only on their current disposable income. In reality, of course, people have to base their spending decisions not just on today’s income but also on the money they expect to earn in the future. During the 1950s, important research by Ando and Modigliani (the Life-Cycle Hypothesis) and Milton Friedman (the Permanent Income Hypothesis) presented significant evidence that people plan their expenditures in system pattern, smoothing consumption over time even when their incomes fluctuated.

In these notes, we will use the techniques developed in the last topic to derive a rational expectations version of the Permanent Income Hypothesis. We will use this model to illustrate some pitfalls in using econometrics to assess the effects of policy changes. Finally, we will discuss the link between consumption spending and fiscal policy.

The Household Budget Constraint

We start with an identity describing the evolution of the stock of assets owned by households. Letting A_t be household assets, Y_t be labour income, and C_t stand for consumption spending, this identity is

$$A_{t+1} = (1 + r_{t+1}) (A_t + Y_t - C_t)$$ \(1\)

where r_{t+1} is the return on household assets at time $t + 1$. Note that Y_t is labour income (income earned from working) not total income because total income also includes the capital income earned on assets (i.e. total income is $Y_t + r_{t+1} A_t$.) Note, we are assuming that Y_t is take-home labour income, so it can considered net of taxes.

As with the equation for the return on stocks, this can be written as a first-order difference
equation in our standard form

\[A_t = C_t - Y_t + \frac{A_{t+1}}{1 + r_{t+1}} \]

(2)

We will assume that agents have rational expectations. Also, in this case, we will assume that the return on assets equals a constant, \(r \). This implies

\[A_t = C_t - Y_t + \frac{1}{1 + r}E_t A_{t+1} \]

(3)

Using the same repeated substitution methods as before this can be solved to give

\[A_t = \sum_{k=0}^{\infty} E_t \frac{(C_{t+k} - Y_{t+k})}{(1 + r)^k} \]

(4)

Note that we have again imposed the condition that the final term in our repeated substitution \(\frac{E_t A_{t+k}}{(1+r)^k} \) goes to zero as \(k \) gets large. Effectively, this means that we are assuming that people consume some of their capital income (i.e. that assets are used to finance a level of consumption \(C_t \) that is generally larger than labour income \(Y_t \)). If this is the case, then this term tends to zero.

One way to understand this equation comes from re-writing it as

\[\sum_{k=0}^{\infty} \frac{E_t C_{t+k}}{(1 + r)^k} = A_t + \sum_{k=0}^{\infty} \frac{E_t Y_{t+k}}{(1 + r)^k} \]

(5)

This is usually called the *intertemporal budget constraint*. It states that the present value sum of current and future household consumption must equal the current stock of financial assets plus the present value sum of current and future labour income.

A consumption function relationship can be derived from this equation by positing some theoretical relationship between the expected future consumption values, \(E_t C_{t+k} \), and the current value of consumption. This is done by appealing to the optimising behaviour of the consumer in a manner that we will derive below.
Piketty and \(r > g \)

Some of you may be aware of Thomas Piketty’s now infamous book *Capital in the Twenty First Century*. If you’re not, scroll down a few pages to check him out. Perhaps Piketty’s most famous conjecture is there is a natural tendency in capitalist economies for wealth to accumulate faster than income. This conjecture can be understood on the basis of the simple budget identity we are working with here.

Consider the simple version of our budget constraint with a constant return on assets

\[
A_{t+1} = (1 + r)(A_t + Y_t - C_t)
\]

(6)

If assets grew at rate \(r \) or faster, then this would likely mean they were growing faster than GDP, because \(r \) is generally higher than GDP growth. So what is the growth rate of the stock of assets? We can calculate the change in assets as

\[
A_{t+1} - A_t = rA_t + (1 + r)(Y_t - C_t)
\]

(7)

So the growth rate of assets is given by

\[
\frac{A_{t+1} - A_t}{A_t} = r + \frac{(1 + r)(Y_t - C_t)}{A_t}
\]

(8)

This means the growth rate of assets equals \(r \) plus an additional term that will be positive as long as \(Y_t > C_t \) i.e. as long as labour income is greater than consumption. So this tells us that the growth rate of assets equals \(r \) plus a term that depends upon whether consumption is greater than or less than labour income. If consumption is less than labour income, assets grow at a rate that is greater than \(r \) while they will grow at a rate slower than \(r \) if consumption is greater than labour income.

Piketty bases his ideas about the tendency for wealth to rise faster than income on the fact that the rate of return on assets \(r \) has tended historically to be higher than the growth
rate of GDP. If we observed $Y_t > C_t$, then assets would grow at a rate greater than r and so this would generally also be higher than the growth rate of GDP. In general, however, we probably don’t expect consumption to be greater than labour income. If the income people earn from their assets doesn’t ever boost their consumption spending, then what is the point of it? And indeed, the data generally show that consumption is greater than labour income, so that people consume some of their capital income (i.e. their income from assets) and total assets should generally grow at a rate that is less than r. Still, Piketty points out that it is possible for people to consume some of their capital income and still have assets growing at a rate smaller than r but greater than g.

Under what conditions, will assets grow at a faster rate than the growth rate of GDP, which Piketty terms g. Our previous equation tells us this happens when

$$g < r + \frac{(1 + r)(Y_t - C_t)}{A_t}$$

This can be re-arranged to give

$$\frac{C_t - Y_t}{A_t} < \frac{r - g}{(1 + r)}$$

So assets will grow faster than incomes if the amount of people’s capital income that they consume (i.e. the amount they consume above their labour income) as a share of total assets is below the specific value on the right-hand-side.

Is there any result in economics that leads us to believe that this last inequality should generally hold? Not to my knowledge. In this sense, Piketty perhaps overstates the extent to which, on its own, the fact that $r > g$ is a “fundamental force for divergence.” What is required for assets to steadily grow relative to income is not only this condition but also an

1For example, page 564: “If $r > g$, it suffices to reinvest a fraction of the return on capital equal to the growth rate g and consume the rest $(r - g)$.
additional, relatively arbitrary, restriction on how much people can consume and this latter condition may or may not hold at various times. However, what can be said is that during periods of high returns on capital, when the gap between r and g is particularly high, then the bigger the right-hand-side of equation (10) will be and it is perhaps more likely that the condition above will be held.

Most likely, however, the key empirical developments that Piketty’s book focuses on—rising assets relative to income and growing inequality of wealth—are being driven by other forces that are making the income distribution more unequal and reducing the share of income going to workers rather than being related to some innate “law of capitalism” that drives wealth up at faster pace than incomes.
Figure 1: Thomas Piketty
Optimising Behaviour by the Consumer

We will assume that consumers wish to maximize a welfare function of the form

\[W = \sum_{k=0}^{\infty} \left(\frac{1}{1+\beta} \right)^k U(C_{t+k}) \]

(11)

where \(U(C_t) \) is the instantaneous utility obtained at time \(t \), and \(\beta \) is a positive number that describes the fact that households prefer a unit of consumption today to a unit tomorrow.

If the future path of labour income is known, consumers who want to maximize this welfare function subject to the constraints imposed by the intertemporal budget constraint must solve the following Lagrangian problem:

\[L(C_t, C_{t+1}, ...) = \sum_{k=0}^{\infty} \left(\frac{1}{1+\beta} \right)^k U(C_{t+k}) + \lambda \left[A_t + \sum_{k=0}^{\infty} \frac{Y_{t+k}}{(1+r)^k} - \sum_{k=0}^{\infty} C_{t+k} \right] \]

(12)

For every current and future value of consumption, \(C_{t+k} \), this yields a first-order condition of the form

\[\left(\frac{1}{1+\beta} \right)^k U'(C_{t+k}) - \frac{\lambda}{(1+r)^k} = 0 \]

(13)

For \(k = 0 \), this implies

\[U'(C_t) = \lambda \]

(14)

For \(k = 1 \), it implies

\[U'(C_{t+1}) = \left(\frac{1+\beta}{1+r} \right) \lambda \]

(15)

Putting these two equations together, we get the following relationship between consumption today and consumption tomorrow:

\[U'(C_t) = \left(\frac{1+r}{1+\beta} \right) U'(C_{t+1}) \]

(16)

When there is uncertainty about future labour income, this optimality condition can just be re-written as

\[U'(C_t) = \left(\frac{1+r}{1+\beta} \right) E_t[U'(C_{t+1})] \]

(17)
This implication of the first-order conditions for consumption is sometimes known as an *Euler equation*.

In an important 1978 paper, Robert Hall proposed a specific case of this equation. Hall’s special case assumed that

\[U(C_t) = aC_t + bC_t^2 \]
\[r = \beta \]

In other words, Hall assumed that the utility function was quadratic and that the real interest rate equalled the household discount rate. In this case, the Euler equation becomes

\[a + 2bC_t = E_t[a + 2bC_{t+1}] \]

which simplifies to

\[C_t = E_tC_{t+1} \]

This states that the optimal solution involves next period’s expected value of consumption equalling the current value. Because, the Euler equation holds for all time periods, we have

\[E_tC_{t+k} = E_tC_{t+k+1} \quad k = 1, 2, 3, \]

So, we can apply repeated iteration to get

\[C_t = E_t(C_{t+k}) \quad k = 1, 2, 3, ... \]

In other words, all future expected values of consumption equal the current value. Because it implies that changes in consumption are unpredictable, this is sometimes called the *random walk* theory of consumption.

The Rational Expectations Permanent Income Hypothesis

Hall’s random walk hypothesis has attracted a lot of attention in its own right, but rather than focus on what should be unpredictable (changes in consumption), we are interested in deriving an explicit formula for what consumption should equal.

To do this, insert $E_t C_{t+k} = C_t$ into the intertemporal budget constraint, (5), to get

$$\sum_{k=0}^{\infty} \frac{C_t}{(1+r)^k} = A_t + \sum_{k=0}^{\infty} \frac{E_t Y_{t+k}}{(1+r)^k}$$

(24)

Now we can use the geometric sum formula to turn this into a more intuitive formulation:

$$\sum_{k=0}^{\infty} \frac{1}{(1+r)^k} = \frac{1}{1 - \frac{1}{1+r}} = \frac{1+r}{r}$$

(25)

So, Hall’s assumptions imply the following equation, which we will term the Rational Expectations Permanent Income Hypothesis:

$$C_t = \frac{r}{1+r} A_t + \frac{r}{1+r} \sum_{k=0}^{\infty} \frac{E_t Y_{t+k}}{(1+r)^k}$$

(26)

This equation is a rational expectations version of the well-known permanent income hypothesis, which states that consumption today depends on a person’s expected lifetime sequence of income.

Let’s look at this equation closely. It states that the current value of consumption is driven by three factors:

- The expected present discounted sum of current and future labour income.
- The current value of household assets. This “wealth effect” is likely to be an important channel through which financial markets affect the macroeconomy.
• The expected return on assets: This determines the coefficient, \(\frac{r}{1+r} \), that multiplies both assets and the expected present value of labour income. In this model, an increase in this expected return raises this coefficient, and thus boosts consumption.

A Concrete Example: Constant Expected Growth in Labour Income

This RE-PIH model can be made more concrete by making specific assumptions about expectations concerning future growth in labour income. Suppose, for instance, that households expect labour income to grow at a constant rate \(g \) in the future:

\[
E_t Y_{t+k} = (1 + g)^k Y_t
\]

(27)

This implies

\[
C_t = \frac{r}{1 + r} A_t + \frac{rY_t}{1 + r} \sum_{k=0}^{\infty} \left(\frac{1 + g}{1 + r} \right)^k
\]

(28)

As long as \(g < r \) (and we will assume it is) then we can use the geometric sum formula to simplify this expression

\[
\sum_{k=0}^{\infty} \left(\frac{1 + g}{1 + r} \right)^k = \frac{1}{1 - \frac{1+g}{1+r}} = \frac{1 + r}{r - g}
\]

(29)

(30)

This implies a consumption function of the form

\[
C_t = \frac{r}{1 + r} A_t + \frac{r}{r - g} Y_t
\]

(31)

Note that the higher is expected future growth in labour income \(g \), the larger is the coefficient on today’s labour income and thus the higher is consumption.
The Lucas Critique

The fact that the coefficients of so-called reduced-form relationships, such as the consumption function equation (31), depend on expectations about the future is an important theme in modern macroeconomics. In particular, in a famous paper, rational expectations pioneer Robert Lucas pointed out that the assumption of rational expectations implied that these coefficients would change if expectations about the future changed.\(^3\) In our example, the MPC from current income will change if expectations about future growth in labour income change.

Lucas’s paper focused on potential problems in using econometrically-estimated reduced-form regressions to assess the impact of policy changes. He pointed out that changes in policy may change expectations about future values of important variables, and that these changes in expectations may change the coefficients of reduced-form relationships. This type of problem can limit the usefulness for policy analysis of reduced-form econometric models based on historical data. This problem is now known as the Lucas critique of econometric models.

To give a specific example, suppose the government is thinking of introducing a temporary tax cut on labour income. As noted above, we can consider \(Y_t\) to be after-tax labour income, so it would be temporarily boosted by the tax cut. Now suppose the policy-maker wants an estimate of the likely effect on consumption of the tax cut. They may get their economic advisers to run a regression of consumption on assets and after-tax labour income. If, in the past, consumers had generally expected income growth of \(g\), then the econometric regressions will report a coefficient of approximately \(\frac{1}{r-g}\) on labour income. So, the economic adviser

might conclude that for each extra dollar of labour income produced by the tax cut, there will be an increase in consumption of \(\frac{r}{r-g} \) dollars.

However, if households have rational expectations and operate according to equation (26) then the true effect of the tax cut could be a lot smaller. For instance, if the tax cut is only expected to boost this period’s income, and to disappear tomorrow, then each dollar of tax cut will produce only \(\frac{r}{1+r} \) dollars of extra consumption. The difference between the true effect and the economic advisor’s supposedly “scientific” regression-based forecast could be substantial. For instance, plugging in some numbers, suppose \(r = 0.06 \) and \(g = 0.02 \). In this case, the economic advisor concludes that the effect of a dollar of tax cuts is an extra 1.5 \((= \frac{0.06}{0.06-0.02}) \) dollars of consumption. In reality, the tax cut will produce only an extra 0.057 \((= \frac{0.06}{1.06}) \) dollars of extra consumption. This is a big difference.

The Lucas critique has played an important role in the increased popularity of rational expectations economics. Examples like this one show the benefit in using a formulation such as equation (26) that explicitly takes expectations into account, instead of relying only on reduced-form econometric regressions.

Implications for Fiscal Policy: Ricardian Equivalence

Like households, governments also have budget constraints. Here we consider the implications of these constraints for consumption spending in the Rational Expectations Permanent Income Hypothesis. First, let us re-formulate the household budget constraint to explicitly incorporate taxes. Specifically, let’s write the period-by-period constraint as

\[
A_{t+1} = (1 + r) (A_t + Y_t - T_t - C_t) \quad (32)
\]

where \(T_t \) is the total amount of taxes paid by households. Taking the same steps as before,
we can re-write the intertemporal budget constraint as

\[
\sum_{k=0}^{\infty} \frac{E_t C_{t+k}}{(1+r)^k} = A_t + \sum_{k=0}^{\infty} \frac{E_t (Y_{t+k} - T_{t+k})}{(1+r)^k}
\]

(33)

Now let’s think about the government’s budget constraint. The stock of public debt, \(D_t\) evolves over time according to

\[
D_{t+1} = (1+r) (D_t + G_t - T_t)
\]

(34)

where \(G_t\) is government spending and \(T_t\) is tax revenue. Applying the repeated-substitution method we can obtain an intertemporal version of the government’s budget constraint.

\[
\sum_{k=0}^{\infty} \frac{E_t T_{t+k}}{(1+r)^k} = D_t + \sum_{k=0}^{\infty} \frac{E_t G_{t+k}}{(1+r)^k}
\]

(35)

This states that the present discounted value of tax revenue must equal the current level of debt plus the present discounted value of government spending. In other words, in the long-run, the government must raise enough tax revenue to pay off its current debts as well as its current and future spending.

Consider the implications of this result for household decisions. If households have rational expectations, then they will understand that the government’s intertemporal budget constraint, equation (35), pins down the present value of tax revenue. In this case, we can substitute the right-hand-side of (35) into the household budget constraint to replace the present value of tax revenue. Doing this, the household budget constraint becomes

\[
\sum_{k=0}^{\infty} \frac{E_t C_{t+k}}{(1+r)^k} = A_t - D_t + \sum_{k=0}^{\infty} \frac{E_t (Y_{t+k} - G_{t+k})}{(1+r)^k}
\]

(36)

Consider now the implications of this result for the impact of a temporary cut in taxes. Before, we had discussed how a temporary cut in taxes should have a small effect. This equation gives us an even more extreme result — unless governments plan to change the profile of government
spending, then a cut to taxes today has no impact at all on consumption spending. This is because households anticipate that lower taxes today will just trigger higher taxes tomorrow.

This result – that rational expectations implied that a deficit-financed cut in taxes should have no impact on consumption – was first presented by Robert Barro in a famous 1974 paper.\(^4\) It was later pointed out that some form of this result was alluded to in David Ricardo’s writings in the nineteenth century. Economists love fancy names for things, so the result is now often referred to as *Ricardian equivalence*.

Evidence on the RE-PIH

There have been lots of macroeconomic studies on how well the RE-PIH fits the data. One problem worth noting is that there are some important measurement issues when attempting to test the theory. In particular, the model’s assumption that consumption expenditures only yield a positive utility flow in the period in which the money is spent clearly does not apply to durable goods, such as cars or computers, which yield a steady flow of utility. For this reason, most empirical research has focused only on spending on nondurables (e.g. food) and services, with a separate literature focusing on spending on consumer durables.

There are various reasons why the RE-PIH may not hold. Firstly, it assumes that it is always feasible for households to “smooth” consumption in the manner predicted by the theory. For example, even if you anticipate earning lots of money in the future and would like to have a high level of consumption now, you may not be able to find a bank to fund a lavish lifestyle now based on your promises of future millions. These kinds of “liquidity

constraints” may make consumption spending more sensitive to their current incomes than the RE-PIH predicts. Secondly, people may not have rational expectations and may not plan their spending decisions in the calculating optimising fashion assumed by the theory.

Following Hall’s 1978 paper, the 1980s saw a large amount of research on whether the RE-PIH fitted the data. The most common conclusion was that consumption was “excessively sensitive” to disposable income. In particular, changes in consumption appear to be more forecastable than they should be if Hall’s random walk idea was correct. Campbell and Mankiw (1990) is a well-known paper that provides a pretty good summary of these conclusions.\(^5\) They present a model in which a fraction of the households behave according to the RE-PIH while the rest simply consume all of their current income. They estimate the fraction of non-PIH consumers to be about a half. A common interpretation of this result is that liquidity constraints have an important impact on aggregate consumption. (A byproduct of this conclusion would be that financial sector reforms that boost access to credit could have an important impact on consumption spending.)

Evidence on Ricardian Equivalence

There is also a large literature devoted to testing the Ricardian equivalence hypothesis. In addition to the various reasons the RE-PIH itself may fail, there are various other reasons why Ricardian equivalence may not hold. Some are technical points. People don’t actually live forever (as we had assumed in the model) and so they may not worry about future tax increases that could occur after they have passed away; taxes take a more complicated form than the simple lump-sum payments presented above; the interest rate in the government’s

budget constraint may not be the same as the interest rate in the household’s constraint. (You can probably think of a few more.) More substantively, people may often be unable to tell whether tax changes are temporary or permanent. Most of the macro studies on this topic (in particular those that use Vector Autoregressions) tend to find the effects of fiscal policy are quite different from the Ricardian equivalence predictions. Tax cuts and increases in government spending tend to boost the economy.

Perhaps the most interesting research on this area has been the use of micro data to examine the effect of changes in taxes that are explicitly predictable and temporary. One recent example is the paper by Parker, Souleles, Johnson and Robert McClelland which examines the effect of tax rebates provided to U.S. taxpayers in 2008.6 This programme saw the U.S. government send once-off payments to consumers in an attempt to stimulate the economy. Since these payments were being financed by expanding the government deficit, Ricardian equivalence predicts that consumers should not have responded. Parker et al, however, found the opposite using data from the Consumer Expenditure Survey. A quick summary:

We find that, on average, households spent about 12-30% (depending on the specification) of their stimulus payments on nondurable expenditures during the three-month period in which the payments were received. Further, there was also a substantial and significant increase in spending on durable goods, in particular vehicles, bringing the average total spending response to about 50-90% of the payments.

You might suspect that these results are driven largely by liquidity constraints but the

various microeconomic studies that have examined temporary fiscal policy changes have not always been consistent with this idea. For example, research by Parker (1999) showed the even relatively high-income consumers seemed to spend more in response to transitory changes in their social security taxes (which stop at a certain point in the year when workers reach a maximum threshold point) while Souleles (1999) found “excess sensitivity” results for consumer spending after people received tax rebate cheques. These results show excess sensitivity even among groups of consumers that are unlikely to be liquidity constrained.

At the same time, this doesn’t mean that households go on a splurge every time they get a large payment. For example, Hsieh (2003) examines how people in Alaska responded to large anticipated annual payments that they received from a state fund that depends largely on oil revenues. Unlike the evidence on temporary tax cuts, Hsieh finds that Alaskan households respond to these payments in line with the predictions of the Permanent Income Hypothesis, smoothing out their consumption over the year. One possible explanation is that these large and predictable payments are easier for people to understand and plan around and the consequences of spending them too quickly more serious than smaller once-off federal tax changes. There is clearly room for more research in this important area.

Things to Understand from these Notes

Here’s a brief summary of the things that you need to understand from these notes.

1. The household budget constraint.

2. How to derive the intertemporal budget constraint.

3. Conditions for the stock of assets to grow faster than income.

4. How to set up and derive first-order conditions for optimal consumption.

5. How to derive the Rational Expectations/Permanent Income Hypothesis.

6. The Lucas Critique applied to temporary tax cuts.

7. The Ricardian equivalence hypothesis.

8. Evidence on the Rational Expectations/Permanent Income Hypothesis.